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ABSTRACTFORMATION AND EVOLUTION OF BREATHERS IN A CHAIN OFNONLINEAR COUPLED OSCILLATORSG�u�l�u, HasanM.S., Department of PhysisSupervisor: Prof. Dr. Sinan BilikmenJanuary 2001, 93 pages.I study the formation and evolution of haoti breathers (CB's) on theFermi-Pasta-Ulam osillator hain with quarti nonlinearity (FPU-� sys-tem). Starting with most of the energy in a single high frequeny mode, themode is found to break up on a fast time sale into a number of spatiallyloalized strutures whih, on a slower time sale, oalese into a singlestruture, a CB. On a usually longer time sale, depending strongly on theenergy, the CB gives up its energy to lower frequeny modes, approahingenergy equipartition among modes. I analyze the behavior, theoretially, us-ing an envelope approximation to the disrete hain of osillators. For �xedboundaries, periodi nonlinear solutions are found, whih are analyzed forlinear stability. The stability analysis indiates that, for the usually nar-row equilibrium strutures, weakly unstable growth near peak amplitudewould propagate into stable regions, thus not leading to large amplitudee�ets. However, broader mode initial onditions, whih relax toward equi-libria, may break up into symmetries other than that initially imposed. Theiii



strutures formed after the fast breakup are found to approximate the un-derlying equilibrium. The strutures undergo slow translational motions,and an estimated time for them to oalese into a single haoti breatherare found to agree with the numerially determined saling �B / E�1. Apreviously developed theory of the deay of the CB amplitude to approahequipartition is modi�ed to expliitly onsider the interation of the breatherwith bakground modes. The saling to equipartition of Teq / E�2 agreeswith the numerial saling and gives the orret order of magnitude of Teq.Keywords: Nonlinear, Osillator Chain, Breather, FPU, Fermi Pasta Ulam
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�OZL_INEER OLMAYAN OS_ILAT�OR D_IZ_IS_INDE ESAS LOKAL_IZEMODLARIN OLUS�UM ve EVR_IM_IG�u�l�u, HasanY�uksek Lisans , Fizik B�ol�um�uTez Y�onetiisi: Prof. Dr. Sinan BilikmenOak 2001, 93 sayfa.
Bu tezde lineer olmayan d�ord�un�u dereeden Fermi-Pasta-Ulam osilat�ordizisinde (FPU-� sistemi) kaotik esas lokalize modlar�n olu�sum ve evrimiinelenmi�stir. Y�uksek frekansl� tek bir moda verilen enerjiyle ba�slat�lan sis-tem k�sa bir s�urede �ok say�da lokalize yap�ya ayr�lm��s, ilerleyen zamanla buyap�lar birle�serek tek bir yap�y� , kaotik esas modu olu�sturmu�stur. Kaotikesas mod ilk enerjiye ba�gl� olarak modlar aras�nda e�spayla�s�ma giderek en-erjisini daha d�u�s�uk frekansl� modlara vermi�stir. Bu davran��s zarf fonksiy-onu yakla�s�m� kullan�larak teorik olarak inelenmi�stir. Sabit s�n�rlar i�in li-neer olmayan periyodik ��oz�umler bulunmu�s ve lineer kararl�l�k inelenmi�stir.Kararl�l�k analizi genellikle dar denge yap�lar� i�in y�uksek genlikli karars�zzay�f yap�n�n kararl� b�olgeye do�gru ilerledi�gini ve b�oylee y�uksek genlik etk-isine neden olmad��g�n� g�ostermi�stir. Bununla birlikte sistemi e�spayla�s�mag�ot�uren geni�s ilk �sartlar�n daha �one �ong�or�ulmemi�s simetrilere d�on�u�sebilee�gig�ozlemlenmi�stir. Bu d�on�u�s�umden sonra olu�san yap�lar�n sistemi e�spayla�s�mav



yakla�st�rd��g� bulunmu�stur. Tek bir esas lokalize mod olu�sum s�uresinin sis-teme ilk verilen enerjiyle ters orant�l� oldu�gu (�M / E�1) n�umerik olarakbulunmu�s ve teoriyle uyumu tart��s�lm��st�r. Esas lokalize modun e�spayla�s�maindirgenmesiyle ilgili daha �one geli�stirilmi�s bir teori, esas modun arkaplanmodlarla etkile�simi g�oz�on�unde tutularak iyile�stirilmi�stir. E�spayla�s�ma gidi�ss�uresinin ise ilk sistem enerjisinin karesiyle ters orant�l� oldu�gu g�ozlenmi�stir(Tep / E�2).Anahtar Kelimeler: Osilat�or Dizisi, Esas Lokalize Mod, FPU, Fermi PastaUlam

vi



To the memories of former physiists.

vii



ACKNOWLEDGMENTSAny work of this sort neessarily represents the inuene andhelp of many people. First of all I am indebted to my family for their love. Ithank my Sinan Bilikmen for his ontinuing support throughout my physiseduation. I would like to thank Vladimir Mirnov who instilled in me a loveof this disipline and helped writing this thesis. Speial thanks to T�ul�unErgin for her small but signi�ant help in latex. I also thank Kai Ullmanwhose numerial ode has been used in omputational part of this work.I am also grateful to the founders of GNU for their great ++ ompilerand to FreeBSD ore team for their reliable operating system. Thanks alsogo to PB Sistem Limited for giving me some CPU time of their ultrafastmahine, PBServer0. Finally I must give the biggest thanks to my mentorand friend, Osman Can, for his advies.

viii



TABLE OF CONTENTSABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii�OZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vDEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viiACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . viiTABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . ixLIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . xiCHAPTER1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . 12 BASIC EQUATION AND INITIAL CONDITIONS . . . . . 73 SOLUTIONS FOR THE ENVELOPE FUNCTION . . . . . 144 FAST EVOLUTION FROM INITIAL STATES . . . . . . . 264.1 Linear Analysis Of Stability . . . . . . . . . . . . . . 274.2 Numerial Observations Of Relaxation OsillationsAnd Symmetry Breakup . . . . . . . . . . . . . . . . 375 BREATHER COALESCENCE . . . . . . . . . . . . . . . . 465.1 Analytial Estimates . . . . . . . . . . . . . . . . . . 475.2 Numerial Results . . . . . . . . . . . . . . . . . . . 566 BREATHER DECAY . . . . . . . . . . . . . . . . . . . . . . 62ix



7 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . 71REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79A ASYMPTOTIC EXPANSION OF I(Y ) . . . . . . . . . . . . 79B ENERGY OF THE NONLINEAR ENVELOPE SOLUTIONS 80C CONDITIONS OF VALIDITY OF a2-APPROXIMATION . 83D ASYMPTOTIC VALUES OF ne� AND nos IN EQUIPAR-TITION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

x



LIST OF FIGURESFIGURE2.1 Initial displaements qi for the �rst 30 osillators (i = 1; 2 :::30)out of N = 128 in the ase E = 50,  = 120, n = N+1� =9. The mode has the symmetry that left and right osilla-tors (with respet to the entral one) have displaements ofalmost equal amplitude but opposite sign. . . . . . . . . . . 122.2 The plot of the envelope funtion  i = (�1)iqi(0) at initialtime t = 0, N = 128,  = 120. Nine extrema orrespondto n = N + 1 �  = 9. The smooth derease of  i from leftto right results from the fat that in numerial simulations asmall amount of energy (� 10%) was plaed in two nearestneighbor modes  = 119 and  = 121. . . . . . . . . . . . . 133.1 Graphs of the e�etive potential energy U(f) as a funtion off , 0 � f � 1, for three values of the onstant of integrationC2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173.2 Comparison of the weakly nonlinear envelope solution (3.16)(solid line) with the equivalent pro�le of the normal mode(3.3) (dashed line) with energy E = 20 and symmetry n = 9.Sine the fator w ' 3 is not too large , the urves are loseto eah other. . . . . . . . . . . . . . . . . . . . . . . . . . . 223.3 Comparison of the strongly nonlinear envelope solution (3.16)(solid line) with the equivalent pro�le of the normal mode(3.3) (dashed line) at energy E = 200 and symmetry n = 9.The large value of w ' 50 makes the urves signi�antlydi�erent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234.1 Dependene of the normalized growth rate, Re s1 (solid line)and Im s1 (dashed line) on the wave number k1, for the aseof a small amplitude breather. . . . . . . . . . . . . . . . . . 34xi



4.2 Dependene of the normalized growth rate, Re s2 (solid line)and frequeny, Im s2 (dashed line) on the wave number karound the peak of a large amplitude breather. . . . . . . . . 364.3 Dynamis of the modulational instability of the periodi equi-librium with many peaks (n� 1). The urves show the pro-�le of the normalized osillator energies ei versus i at a timewhen a long wavelength modulational instability is visible.E = 5; n = 16; t = 11800 s; the estimate of the most unsta-ble wavelength, �m = 64, is in a good agreement with theobserved wavelength. . . . . . . . . . . . . . . . . . . . . . . 404.4 Dynamis of the modulational instability of the periodi equi-librium with many peaks (n� 1). The urves show the pro-�le of the normalized osillator energies ei versus i at a timewhen a long wavelength modulational instability is visible.E = 20; n = 16; t = 3500 s; the estimate of the most unsta-ble wavelength, �m = 32, is in a good agreement with theobserved wavelengh. . . . . . . . . . . . . . . . . . . . . . . 414.5 Snapshots of osillator energies ei versus osillator numberi at suessive times, illustrating the dynamis of relaxationfrom an initial state around the nearest equilibrium state.The dashed line shows the pro�le of the equlibrium envelopesolution with the same initial energy and symmetry. Thease of regular osillations without breakup of symmetry atlow energy E = 0:65; n = 1; pro�les of Ei are shown att = 0 and t = 1800 s whih orrespond to the initial stateand maximum of deviation of the envelope funtion from theinitial state. . . . . . . . . . . . . . . . . . . . . . . . . . . . 424.6 Snapshots of osillator energies ei versus osillator numberi at suessive times, illustrating the dynamis of relaxationfrom an initial state around the nearest equilibrium state.Illustration of the symmetry breaking at higher energy, E =1:29; n = 1; the two distrubutions shown are the pro�lehaving initial symmetry at t = 1000 s and the transition tothe symmetry n = 2 at t = 2000 s. . . . . . . . . . . . . . . 434.7 The ase of the regular osillations with the initial onditionsE = 1; n = 2 at t = 0 and t = 700 s. The dashed urve givesthe equilibrium pro�le. . . . . . . . . . . . . . . . . . . . . . 44xii



4.8 The breakup of the initial symmetry n = 2 and transitionto n = 4 in the ase of E = 10; snapshots orrespond to (1)t = 0, (2) t = 200 s and (3) t = 1000 s. . . . . . . . . . . . . 455.1 Dependene of the breather veloity vB on its amplitude  m,obtained from the virial theorem. The horizontal line showsasymptoti value of vB and  m !1. . . . . . . . . . . . . 545.2 Numerial dependenes of the number of breathers, lnNB(t),versus time. The straight line urves indiate the onstanyof the deay time � during the oalesene from 8-12 breathersto two breathers. The �nal oalesene to one breather hasless statistial auray. Initial energy E = 20; n = 9. . . . 575.3 Numerial dependenes of the number of breathers, lnNB(t),versus time. The straight line urves indiate the onstanyof the deay time � during the oalesene from 8-12 breathersto two breathers. The �nal oalesene to one breather hasless statistial auray. Initial energy E = 50; n = 9 . . . . 585.4 Numerial results illustrating the dependene of the deaytime ln �B versus initial energy lnE obtained from results atvarious energies as desribed in Fig. 5.2, 5.3. . . . . . . . . 595.5 Time dependene of the osillator number imax de�ned asthe position of the osillator having a maximum energy inomparison with all other osillators at a given time t. After104 s, when a largest breather is established, it shows theposition of that breather. . . . . . . . . . . . . . . . . . . . 605.6 Time dependene of the maximum energy eimax of the osil-lators desribed in Fig. 5.5. After the largest breather isestablished it orresponds to the energy of the osillator atthe peak of the breather. . . . . . . . . . . . . . . . . . . . 616.1 Time dependene of the energy of normal mode Ej for j =121 and j = 122 during the time interval 50000 s< t <50050 s when a single haoti breather is well established(E = 50; n = 9). . . . . . . . . . . . . . . . . . . . . . . . . 646.2 Theoretial urve and numerial points illustrate the depen-dene of beat frequeny, ln
B, on energy, lnEB, indiating anearly linear proportionality in the energy range investigated. 67xiii



6.3 Time dependene of nos(t). The horizontal lines are theo-retial asymptotes . . . . . . . . . . . . . . . . . . . . . . . 686.4 Time dependene of neff(t). The horizontal lines are theo-retial asymptotes . . . . . . . . . . . . . . . . . . . . . . . 69C.1 Dependenes of !B on breather amplitude,  m; the solidurves orrespond to a4 approximation, the dashed urvesto a2 approximations. . . . . . . . . . . . . . . . . . . . . . . 86C.2 Dependenes of � and ��1 on breather amplitude,  m;the solid urves orrespond to a4 approximation, the dashedurves to a2 approximations. . . . . . . . . . . . . . . . . . . 87C.3 Comparison of the breather pro�les obtained in a2 approxi-mation (eq. (3.17) - thin solid urves); (eq. (3.18) - dashedurves) and in a4 approximation (eq. (3.1) - thik solid urves)for three values of the amplitudes; (a)  m = 0:5, (b)  m = 1,()  m = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xiv



CHAPTER 1INTRODUCTION
Coupled osillator hains form good test systems for investigating energyexhange among degrees of freedoms [1℄. In partiular, the Fermi-Pasta-Ulam (FPU) system, onsisting of a set of equal masses oupled to nearestneighbors by nonlinear springs, has been extensively studied [1, 2, 3, 4, 5, 6,7, 8, 9, 10, 11, 14, 18, 19℄. Starting with energy initially in a low frequenymode, Fermi, Pasta, Ulam [2℄ observed, for low energies, that the osillatorsdid not relax to the equipartition state, but displayed reurrenes whihwere later explained in terms of beating among the system modes [1, 3℄. Atheoretial predition of a threshold to fast equipartition by mode overlap[4℄ was subsequently qualitatively on�rmed by studies of energy thresholdsrequired to give approximate equipartition among modes [5, 6, 7℄. A weakermehanism that also led to equipartition on a slower timesale has also beenstudied [8, 9, 10℄. With initial energy in a low-frequeny mode, it was shownin [9℄ that the resonant interation of a few low frequeny modes an lead toloal superperiod beat osillation that is stohasti, transferring energy to1



high frequeny modes by di�usion. With inreasing loal energy, there is atransition from exponentially slow transfer to a time sale that is inverselyproportional to a power of the energy density.The FPU -� system with quarti nonlinearity an be approximated,for low-frequeny mode initial onditions, by the mKDV equation, whihadmits a soliton solution, that an beome unstable with inreasing energy[11℄. This instability roughly oinides with the reation of stohasti layersin the beat osillations [9℄. The lose onnetion between the developmentof stohasti layers in beat osillations and instabilities in nonlinear stru-tures was also noted for the disretized sine-Gordon equation, onsisting ofpendula oupled by linear springs [12, 13℄. In [12℄, it was numerially foundthat the breakup of a nonlinear struture, starting from a high-frequenymode initial ondition, ourred at higher energy and on a slower time salethan from energy initially in a low-frequeny mode.A partial understanding of the inreased stability ame from a series ofanalyses of breather-like strutures on disrete systems that admitted ex-at breather solutions [14, 15, 16, 17, 18, 19℄. High frequeny mode initialonditions have symmetry of neighboring osillators lose to that of loal-ized exat breathers. The resulting dynamis onsists of three stages. Firstthere is an initial �rst stage in whih the mode breaks up into a number of2



breather-like strutures. Seond, on a slower time sale, these strutures o-alese into one large unstable struture. These strutures have been alledhaoti breathers (CB) [18℄. Sine a single large CB losely approximatesa stable breather, the �nal deay stage, toward equipartition, an be veryslow. This behavior has been observed in osillator hains approximatingthe Klein-Gordon equation with various fore-laws [15, 16, 17℄ e.g. the dis-retized sine-Gordon equation [17℄, and, more relevantly for this thesis, theFPU-� model [14, 18, 19℄. In [14℄ and [18℄, the energy was plaed in thehighest frequeny mode with strit alternation of the amplitudes from oneosillator to the next. This on�guration is stable up to a partiular energyat whih a parametri instability ours, leading to the events desribedabove [14, 18℄. However, the nonlinear evolution does not depend on spe-ial initial onditions, but will generially evolve from any high-frequenymode initial ondition that has predominantly the alternating amplitudesymmetry [19℄. One does not know, in this generi situation, whether thereexists any true energy threshold to ahieve equipartition, although there ap-pears to be some numerial evidene for suh a threshold in the disretizedsine-Gordon system [12℄. However, as disussed extensively with respetto low-frequeny mode initial onditions, the pratial thresholds refer toobservable time sales [9, 10℄. From a phase-spae perspetive it is intu-itively reasonable that for a large number of osillators and not too low an
3



initial energy the generi set of initial onditions will lie in a haoti layer,but the haoti motion an remain lose to a regular orbit for very longtimes [1℄. The saling with energy density of the time to equipartition hasbeen estimated for high frequeny initial onditions, from the interation ofbeat modes using a proedure developed to alulate the equipartition timefrom low frequeny initial onditions [20℄. The result gave the numeriallyobserved saling but strongly underestimated the time, whih is at leastpartially related to the transient formation of the breather [19℄.
Considerable insight into the behavior of a nonlinear osillator hain,starting from high frequeny mode initial onditions, an be obtained by in-troduing an envelope funtion for the displaements of the osillators. Theinitial onditions for the envelope only ontain signi�ant long wavelengthperturbations. For the envelope funtion an expansion is then possible toobtain a nonlinear partial di�erential equation (PDE) whih approximatesthe behavior of the disrete system [21, 22℄. Low-order expansions of thistype produe PDEs that have integrable solutions in the form of envelopesolutions, analogous to the solutions produed from low-frequeny initialonditions [21℄. Higher order terms destroy the integrability, but the atualdisretized osillator hains an have loalized breather solutions whih arealso integrable [16, 17℄. Thus we might expet the results, obtained from4



higher order expansions, to approximate breather solutions that may, how-ever, be weakly unstable.The envelope funtion expansion proedure has been applied to the FPU-� system to explore the nonlinear long-wavelength solution, its modulationinstability, the loalization into proto-breathers, and their oalesene intoa single haoti breather [22℄. These results were mainly limited to thesmall-amplitude nonlinear solution, whih therefore limited the range ofappliability. The initial breakup of the high frequeny mode was alsoalulated only for periodi boundary onditions, i.e. for the highest modenumber for whih the initial envelope funtion is uniform. These limitationsled to results that, while qualitatively signi�ant, do not agree quantitativelywith numerial results in the usually explored energy density ranges or withosillator hains with �xed ends [18, 19℄.In the following hapters i �rst presented the basi equations of the hainin osillator and normal mode forms. I then used expansions to obtain theenvelope equation. Then, in Chaper III, i obtained solutions of the en-velope equations valid for arbitrary amplitude. In Chapter IV i obtainedthe approximate loal dispersion for the modulation instability and om-pare the results to numerial evolution of the disrete equations for a rangeof energies and initial periodiities of the envelope. Chapter V onsiders5



oalesene of the protobreathers that are formed in the modulational in-stability proess. In Chapter VI the mode piture of the energy transfermehanism is modi�ed to spei�ally take into aount the beating betweenbakground low amplitude modes and the breather, to obtain an estimateof the breather deay time.

6



CHAPTER 2BASIC EQUATION AND INITIAL CONDITIONSThe Hamiltonian funtion of the FPU-� model of N osillators isH = NXi=0 " p2i2 m + Kh2 (qi+1 � qi)2 + Kah4 (qi+1 � qi)4# (2.1)where Kh and Kah are, respetively, the harmoni and anharmoni foreonstants. This problem has �xed boundaries p0 = pN+1 = 0, q0 = qN+1 =0. Using Hamilton's equations, the Hamiltonian yields the equations ofmotion of the individual osillatorsmd2qidt2 = Kh(qi+1+qi�1�2qi)+Kah[(qi+1�qi)3�(qi�qi�1)3℄ i = 1; 2; :::N(2.2)Introduing dimensionless variables t ! tqKh=m, q ! qqKah=(Kh �)expressions (2.1) and (2.2) an be rewritten in the form that orrespondsto m = Kh = 1.H = NXi=0 " 12 p2i + 12 (qi+1 � qi)2 + �4 (qi+1 � qi)4# (2.3)d2qidt2 = qi+1+ qi�1� 2qi+�[(qi+1� qi)3� (qi� qi�1)3℄ i = 1; 2; :::N (2.4)
7



The dimensionless fator � is introdued to write (2.3) and (2.4) in a stan-dard form whih is traditionally used in publiations for the FPU-� model.I hoose � = 0:1 to orrespond to previous papers and thus failitate om-parison with the results of other studies. The hoie of � resales the dimen-sionless variables suh that the energy of the system and, orrespondingly,the Hamiltonian are measured in the units of � K2h=KahThe Hamiltonian funtion (2.3) onsists of quadrati part Hh whih de-sribes the harmoni osillations and anharmoni quarti potential, Hah,whih is proportional to �. With the help of a anonial transformation Hhan be presented in the form of N independent normal modes Pj, QjQj = � 2 
jN + 1�1=2 NXi=1 sin(k i j)qi (2.5)Pj =  2
j(N + 1)!1=2 NXi=1 sin(k i j) pi (2.6)suh that the linear part of the Hamiltonian beomesHh = NXj=1 
j2 ( Pj 2 +Qj 2) (2.7)where 
j = 2 sin �12 k j� ; k = �=(N + 1); j = 1; 2; :::N (2.8)The reverse transformation isqi = � 2N + 1�1=2 NXj=1 sin(k i j) Qj
j1=2 (2.9)
8



pi = � 2N + 1�1=2 NXj=1 sin(k i j) 
j1=2 Pj (2.10)Index i is used for funtions desribing osillators while j is used to labelthe variables related to the normal modes. Transformations (2.9),(2.10)automatially satisfy boundary onditions p0 = pN+1 = q0 = qN+1 = 0whih are kept �xed.For numerial integration initial onditions are usually hosen suh thatat t = 0 only one normal mode is exited. If there were no nonlinearinteration between the normal modes the energy would be loalized in thisinitially exited mode forever. However, due to anharmoni oupling theenergy transfers throughout the spetrum. The purpose of this thesis isto examine the main physial mehanisms that partake in the proesses ofenergy transfer.In order to exite spei�ally one normal mode with the frequeny 
the displaements of the osillators and their momenta are hosen at t = 0in aordane with (2.9), (2.10). The total energy E is shared betweenkineti and potential parts of (2.7) suh that a fration f is delivered to thekineti energy P 2 (0) = 2 f E= 
 while the rest of the energy is plaed inthe potential energy,Q2(0) = 16�
 �q24�E(1� f)(N + 1) + (N + 1)2 �N � 1� (2.11)Expression (2.11) is alulated with the help of (2.3) and takes into9



aount the anharmoni term not inluded in (2.7). Correspondingly, theinitial displaements and veloities of the osillators are as follows:qi(0) =  2 Q2(0)
(N + 1)!1=2 (�1)i+1 sin� � i nN + 1� (2.12)
_q(0) = pi(0) =  2 P 2 (0) 
N + 1 !1=2 (�1)i+1 sin� � i nN + 1� (2.13)I will mostly treat the ase N = 128 with initially exited mode  = 120;however, other variants with di�erent values of N ,  are also onsidered. Iprinipally examine ases with  in the upper part of the spetrum so thatn = N + 1 �  << N + 1. Note that for these ases the harateristitimes of the initially exited modes orrespond to a period T ' �, e.g. thefrequeny 
120 ' 2. In numerial alulations a small fration of the totalenergy (10 perent) is usually plaed into two satellites  � 1 and  + 1 tospeed up the initial phase of the relaxation; however, this does not play animportant role in long term behavior of the system.The main parameter whih de�nes the rates of the di�erent stages ofrelaxation is the spei� energy per osillator E=N . For an intuitive under-standing of this statement one an introdue new dimensionless funtionsqi ! q=~q where ~q = qE=(N + 1). This leads to a slightly modi�ed set ofequations (2.4) with renormalized � ! � [ E=(N + 1) ℄ whih leaves the10



R.H.S. of the new initial onditions for qi(0) and dqi=dt(0) independent ofE=N and ranged between -1 and 1 for all possible values of N . Althougha dependene on N still exists in the initial onditions it apparently be-omes rather weak for large N suh that the main parameter whih de�nesthe time sales of the relaxation expliitly depends on the spei� initialenergy per osillator E=N . This general behavior was on�rmed in the nu-merial alulations performed for di�erent E=N and N [18, 19℄ . Thesealulations demonstrated that the long-term dynamis of relaxation wasessentially independent of N for N >� 100.A typial pro�le of initial displaements (2.12) is shown in Fig. 2.1 forthe ase E = 50, f = 0,  = 120, exhibiting the fast variations of qi from oneosillator to another harateristi of high  modes. As in previous studies[21, 22℄, to remove this fast variations i introdue the envelope funtion i(t) = (�1)i qi(t) whih is a slowly varying funtion of the number i.The pro�le of the omplete envelope funtion orresponding to Fig. 2.1 isillustrated in Fig. 2.2. The smooth spatial pro�le of  makes possible theuse of a ontinuous approximation where the osillators are desribed by theontinuous variable x = ai, where a is the lattie period. Taylor's expansionthen gives (x� a) =  (x) +  x(x)(�a) + (1=2) xx(x) a2 +(1=6) xxx(x)(�a)3 + (1=24) xxxx(x) a4 + ::: (2.14)11



Figure 2.1: Initial displaements qi for the �rst 30 osillators (i = 1; 2 :::30)out of N = 128 in the ase E = 50,  = 120, n = N +1� = 9. The modehas the symmetry that left and right osillators (with respet to the entralone) have displaements of almost equal amplitude but opposite sign.Substituting (2.14) in (2.4 ) and olleting terms proportional to the di�er-ent powers of a yields tt + 4  + 16 �  3 + a2 f  xx + � (12   2x + 12  2 xx)g +a4 f (1=12)  xxxx + � (3  2x  xx + 3  2xx + 4  x xxx +  2  xxxx)g+ ::: = 0(2.15)where subsripts t and x stand for temporal and spatial derivatives of (x; t). Linear terms with spatial derivatives desribe the dispersion (de-pendene of 
 on e�etive wave number �j=(N + 1) in (2.8)). Nonlinear12



Figure 2.2: The plot of the envelope funtion  i = (�1)iqi(0) at initial timet = 0, N = 128,  = 120. Nine extrema orrespond to n = N + 1�  = 9.The smooth derease of  i from left to right results from the fat that innumerial simulations a small amount of energy (� 10%) was plaed in twonearest neighbor modes  = 119 and  = 121.terms produe a frequeny shift, whih drives a proess of steepening ofthe envelope funtion and formation of loalized states (CB's), while the ef-fet of dispersion leads to the opposite proess of attening of the envelopefuntion. This qualitatively explains why relaxation is aompanied by theformation of sharply loalized states if energy is initially deposited in thehigh frequeny part of the spetrum where the e�et of dispersion is small,while only broad nonlinear strutures are formed if the energy is initially inthe low frequeny modes where the dispersion is large.13



CHAPTER 3SOLUTIONS FOR THE ENVELOPE FUNCTIONIn (2.15), negleting the terms with a6 or higher , introduing the dimen-sionless variable x! x=a (0 � x � N +1) and assuming a monohromatidependene  (x; t) =  (x) os! t leads to an equation for  (x) ( where !plays role of the eigenvalue)(�!2 + 4)  +  xx + � ( 12  3 + 9   2x + 9  2 xx) +(1=12)(  xxxx + � (27  2x  xx + 27  2xx + 36  x xxx + 9 2  xxxx)) = 0(3.1)where i have used os3 ! t = (3=4) os! t + (1=4) os 3 ! t with termsproportional to os 3 ! t ignored [21, 22℄. This is also known as rotatingwave approximation (RWA). Negleting terms proportional to � yields alinear equation for the eigenmodes:(�!2 + 4)  +  xx = 0 (3.2)Solving this equation for  (x) with zero boundary onditions at x = 0 andx = N+1 gives N eigenmodes whih orrespond to the high frequeny linear14



normal modes of the disrete FPU hain n(0)(x) =  mn sin qn x (3.3)!2 = 4� q2n; qn = �(N + 1� )N + 1 = � nN + 1 (3.4)where n = N + 1 �  � N + 1 and  mn �  max; n . Supersript (0) isintrodued to indiate that (3.3) is a solution to the linearized equation(3.2).The redued (with all terms of order a4 dropped) nonlinear equation(3.1) has exat analytial solutions,  (x), whih are periodi funtions of x.A subset of these solutions have q = 0 at x = 0; N + 1. These solutions area natural generalization of the linear solutions, for the ase when nonlineare�ets are important. These envelope funtions have the same spatial peri-odiity as the orresponding linear modes (3.3). However, their pro�les arenot harmoni funtions of x and the frequeny of osillations has a nonlinearshift. Note that the third (and higher) harmonis of !, whih are exludedfrom onsideration due to the RWA, leads to nonharmoni time dependeneof  (x; t). Multiplying (3.1) by  x, and integrating over x yields a �rstintegral (�!2 + 4)  2 +  x2 + � ( 6  4 + 9  2  2x) = C1 (3.5)where all terms of order a4 have been dropped.15



This funtion desribes a family of solutions whih depends on two pa-rameters, C1 and !. Equation (3.5) has been examined in the speial asewhere C1 is hosen suh that  x = 0 at  =  max and  =  min [22℄. Ionsider more general ases assuming that  x = 0 at  =  max but notusing the seond ondition that  x = 0 at  =  min (see, for examplesolution (3.3) for n = 1). Assuming that  (x) is normalized to the maxi-mum value  m �  max, and introduing, orrespondingly, a new funtionf(x) �  (x)= m one an rewrite 3.5 in a form whih is similar to the energyonservation law for a unit mass partile in an external potential U(f)fx22 + U(f) = 0 (3.6)where fx2 plays role of kineti energy while the potential energy isU(f) = � 3 � 2m(1� f 2)( f 2 + C2)(1 + 9 �  2mf 2) (3.7)and the total energy is zero. In transforming from (3.5),(3.6) to (3.7) therelation fx = 0 at f = 1 was used and a new onstant C2 = ( 4 � !2 +6 �  2m ) = 6�  2m was introdued, replaing C1 = 6 � 4m C2. The graphs ofU(f) are illustrated in Fig. 3.1. for three di�erent values of the onstant C2(C2 = �0:9; 0; 0:9). Intersetions of these graphs with the horizontal lineE = 0 show that in the ase of positive C2 (for example, C2 = 0:9) solutions (x) are osillating funtions of x whih vary between minimum � m andmaximum  m values. C2 = 0 orresponds to the speial separatrix solution16



whih is represented by the single loalized wave (soliton, breather) with (x)! 0 at x! �1 and frequeny!2B = 4 + 6 �  2m (3.8)

Figure 3.1: Graphs of the e�etive potential energy U(f) as a funtion off , 0 � f � 1, for three values of the onstant of integration C2.In the third ase of negative C2 solutions  (x) are varying betweentwo nonzero positive/negative boundaries  max and  min with frequeny!2 = 4+ 6 � ( 2min +  2max). This third family of solutions is related to thease of periodi nonzero boundary onditions, q1 = qN+1, mentioned above.In partiular, when C2 ! � 1, it represents so alled � - mode when eahsingle osillator is involved in oherent motion where its two neighbors have17



opposite phases and equal amplitudes and, orrespondingly, the envelopefuntion  =  max =  min =  m. In this ase the nonlinear frequeny shiftreahes a maximum value !2 = 4 + 12 � 2m (3.9)whih an be easily obtained from (2.4) by keeping qi+1 = qi�1 = �qi.In order to satisfy boundary onditions of �xed zero displaements atx = 0 and x = N + 1 the �rst ase (positive C2) is required sine it isthe only one whih periodially passes though the point where  = 0. Thespatial period of these osillations is given byZ 10 df  dfdx!�1 = �=4 (3.10)Zero boundary ondition at x = N + 1 is automatially satis�ed if the halfwave length �=2 is a solution to the equation (�=2) n = N + 1, where n isinteger (n = 1; 2:::N) and related to , as n = N + 1� . The dispersionrelation (3.10) determines the spetrum of the frequenies ! as a funtionof n and  m. Substituting fx from (3.6) in (3.10) and using a new variablesin� = f , (3.10) an be written in the formI(r;  m) = 2� Z �=20 d�  1 + 9 �  2m sin2 �sin2 � + r2 !1=2 = s6 �  2m �N + 1�n �2(3.11)where i have substituted �=4 = (N + 1)=(2n) on the R.H.S. The fatorr2 � C2 = ( 4 � !2 + 6 �  2m ) = 6�  2m has been introdued as a positive18



quantity to provide onvergene of the integral and, thus, to satisfy theboundary onditions. The parameter w(n;  m) on the R.H.S. of (3.11)w(n;  m) = 6 �  2m �N + 1�n �2 (3.12)gives the relative e�et of the nonlinear frequeny shift of a given normalmode of integer n, with respet to the linear frequeny shift of that modefrom the upper frequeny bound. This fator plays an important role innonlinear wave dynamis, desribing the relationship between linear disper-sion and nonlinear e�ets. The balane of these mehanisms leads to thespontaneous formation of transient self-onsistent loalized strutures withw ' 1, whih are observed in almost all numerial simulations.The limiting ase of weak nonlinearity orresponds to values of w � 1.This smallness an be balaned by the integral in the L.H.S. if r ! 1.Simplifying the integrand in this limit, I(r;  m) ! 1=r, yields a disretespetrum of eigenfrequenies of the linear problem!2n = 4 + 6 �  2m � �2 n2(N + 1)2 (3.13)where the small nonlinear orretion 6 �  2m is added to the linear ase(3.4).In the opposite limiting ase, w(n;  m) � 1, one should solve the dis-persion relation for the R.H.S. of (3.11) muh greater than one. This anbe balaned by the L.H.S. if r � 1. Asymptotily expanding the L.H.S. for19



r ! 0 yields a logarithmi dependene on r in the leading approximationwhih desribes the dependene on  m (see, Appendix A)I(r;  max)! 1� ln 16r2 (1 + 9� 2m)!+ 6 q� 2m� arsinvuut 9� 2m1 + 9� 2m (3.14)Solving (3.11) for ! yields the spetrum of the eigenfrequenies valid in thease of strong nonlinearity!2n = 4+6� 2m8<:1� 161 + 9� 2m exp 24�q6� 2m0�N + 1n �p6 arsinvuut 9� 2m1 + 9 � 2m1A359=;(3.15)The fator r2 is given by the seond term in urly brakets. It is exponen-tially small, r2 / exp(�w=�), in the strongly nonlinear ase, w � 1. Thespatial pro�les of the nonlinear eigenfuntions  (x) are determined by theintegral of (3.6), (3.7), having an upper limit given by arsin( = m) andzero boundary ondition at x = 0 while the seond zero boundary onditionat x = N + 1 is satis�ed automatially sine !n is the eigenvalue given bythe relation (3.11).x( ) = 1q6 �  2m Z arsin( = m)0 d�  1 + 9 �  2m sin2 �sin2 � + r2 !1=2 0 � x � �=4(3.16)Equation (3.16) de�nes  (x) in 0 � x � �=4. It is symmetrially ontinuedfrom �=4 to �=2, then antisymmetrially reeted from �=2 to �, and thenperiodially ontinued over the entire hain. The resulting graphs of  n(x)are plotted in Figs. 3.2 and 3.3 together with the pro�les of equivalent linear20



modes (3.3) for typial values N = 128; n = 9; � = 0:1 and two amplitudes m = 0:45 and  m = 1:85, respetively. These values orrespond to weakand strong nonlinearity, w(9;  m) ' 3 and w(9;  m) ' 50, respetively.The linear pro�les (3.3) are used for initial onditions. In the proess ofrelaxation these initial pro�les might be expeted to approah the equivalentenvelope solutions (3.16) of the same periodiity and total energy. Dueto onservation of energy the amplitudes of the envelope solutions (3.16)are higher than the initial values. In the weakly nonlinear ase 3.2 thedi�erene is small, while in the strongly nonlinear ase 3.3 the di�ereneis large beause the nonlinear peaks are muh narrower than the initialsinusoidal pro�les. Numerial alulations presented in the next haptershow that due to a modulation instability the periodiity is broken in theproess of relaxation suh that the only link between initial and �nal statesis the onservation of energy.The periodi envelope solution (3.16) with n = 1 looks similar to thesingle breather in an in�nitively long hain, whih is obtained from (3.16) inthe limit N !1. Putting r = 0 and rearranging the limits of integrationin aordane with zero boundary onditions at in�nity, yields
x(f) = 1q6 �  2m Z �=2arsin f d�sin�(1 + 9 �  2m sin2 �)1=2 0 � x < +1(3.17)21



Figure 3.2: Comparison of the weakly nonlinear envelope solution (3.16)(solid line) with the equivalent pro�le of the normal mode (3.3) (dashedline) with energy E = 20 and symmetry n = 9. Sine the fator w ' 3 isnot too large , the urves are lose to eah other.For the low amplitude ase, 9� 2m � 1, integral (3.17) is simpli�ed giving B(x) =  m osh�1(q6 �  m x) (3.18)while in the large amplitude ase, 9� 2m � 1, (3.17) desribes, asymptoti-ally, the breather of �nite width d ' 5 (�ve osillators) B(x) =  m oss23 x � �s38 < x < �s38 (3.19)The energy of the envelope solutions is given by equation (B.4). The �rsttwo terms are alulated at the boundaries and anel eah other beause of22



Figure 3.3: Comparison of the strongly nonlinear envelope solution (3.16)(solid line) with the equivalent pro�le of the normal mode (3.3) (dashedline) at energy E = 200 and symmetry n = 9. The large value of w ' 50makes the urves signi�antly di�erent.the spatial periodiity of the modes. The last three terms in the integrandare ignored beause they originate from terms of a4 order in equation 2.15whih are not onsidered. Substituting (3.5), (3.6) into (B.4), expressing!2 in terms of r2 and transforming the variable of integration as in (3.11)yields an expression for the energyE = 2 n  mp6� Z �=20 d�  1 + 9 �  2m sin2 �sin2 � + r2 !1=2 �
��(3 �  2m sin4 � + 2 sin2 � � 32 �  2m r2� (3.20)
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The integral in (3.20) is simpli�ed and alulated analytially in twolimiting ases. If  m is suÆiently high that, w(n;  m)� 1, nonlinear e�etsare dominant in omparison with the e�et of dispersion and aording to(3.11), r ! 0. Substituting r = 0 in (3.20) the integral is alulated exatlyand de�nes a funtion Z(y) with y = �  2m. The expliit expression for Z(y)is given by (B.5),(B.6). This funtion an be further simpli�ed in the limitsof y >> 1 and y << 1 whih we all, respetively, large and small amplitudenonlinear envelopes. In the �rst subase the asymptoti expansion of Z(y)yieldsE = 9 � p6 n �16   4m � 23�p�  3m! ; 1� q6 �  2m (3.21)where the  3m term is the next order orretion to the leading  4m term. Inthis large amplitude regime energy is mostly due to the quarti � term in thepotential energy (2.3). The envelope funtion and energy are onentratedin n narrow periodially distributed peaks eah onsisting of 4-5 osillatorswhile in wide areas between the peaks osillations are exponentially small.In the seond subase of small amplitude, the leading terms in the ex-pansion of Z(y) yieldE = 4 np6 � � m + 4 �  3m� � n=(N + 1)� q6 �  2m � 1 (3.22)where the  3m term is a orretion to the leading,  m term. The energyis mostly due to the quadrati term in the potential energy (2.3). It is24



also loalized in n periodially distributed peaks but the width of the peaksand, orrespondingly, the number of osillators in eah of them are inverselyproportional to  m. This results in the linear dependene on  m in (3.22).If the amplitude  m is suÆiently low that q6 �  2m � �n=(N + 1)the osillations beome nearly linear. As in obtaining (3.13) the fator r isnow muh greater than one and integral (3.20) an be alulated in the limitr !1 by ignoring the term sin� in omparison with r in the denominator.Expression (3.20) yieldsEN + 1 =  2m  1� �2n24(N + 1)2! q6 �  2m � � n=(N + 1)� 1 (3.23)The quadrati energy dependene on  m again results from the quadratiterm in the potential energy (2.3) with a maximum value of 2  2m in a singleosillator, and a fator of 1=2 is introdued from the nonuniform pro�le ofthe envelope funtion. This regime is equivalent to the disreet normal modesolution, whih represents initial onditions used in numerial alulationsin the ase when all energy is plaed at t = 0 in the potential energy.
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CHAPTER 4FAST EVOLUTION FROM INITIAL STATESFor most numerial studies of osillator hains the initial state imposed onthe system is that of a single linear mode. This state is generally not lose toan equilibrium. The initial state rapidly relaxes, governed by the nonlinearequations. The evolution may be inuened by the underlying stability ofnearby equilibria, but annot be analyzed diretly as perturbations aroundthose equilibria. It is also possible to prepare the initial onditions to belose to an equilibrium and onsequently to diretly analyze linear stability.I therefore study both the linear stability of the envelope solutions withrespet to small perturbations, Æ i(x) <<  i(x), and the relaxation from aremote initial state (2.12), (2.13) to nonlinear envelope solutions (3.16).For analysis of non-stationary envelopes, whih desribe relaxation, in-stability, or breather translational motion, it is onvenient to rewrite thebasi equation (2.15) in the form of two oupled equations for amplitudeq(x; t) and phase �(x; t) whih are related to  (x; t) as (x; t) = q(x; t) os(! t + �(x; t)) (4.1)26



Substituting (4.1) in (2.15) and olleting terms proportional to sin(!t +�(x; t)) and os(!t+�(x; t)) leads to oupled equations for the phase �(x; t)and amplidute q(x; t)q�tt + 2 qt(! + �t) + 2 qx�x + q�xx + 12 �q2qx�x + 3 �q3�xx = 0 (4.2)qtt� (!+�t)2q+4 q+ qxx� q�2x+12 �q3+9 �q(qqx)x� 6 �q3�2x = 0 (4.3)4.1 Linear Analysis Of StabilityEnvelope solutions are fast osillating funtions of time whih are sub-jet to parametri (modulation) instability. The instability is driven bythe periodi variation of the frequeny, whih appears in the linear equa-tion for a perturbation, due to the nonlinear frequeny shift aused by theunperturbed envelope solution. For the usually applied modal initial ondi-tions unstable breakup of modes are observed [18, 19℄. However, numerialalulations show that the nonlinear stage of this instability leads to the for-mation of long living self-organized loalized strutures, haoti breathers,whih appear to be marginally stable with respet to a fast modulation in-stability. By investigating the stability of nonlinear equilibria i will improveour understanding of the mehanism by whih they are stabilized. Althoughi am examining periodi equilibria (3.16), i will put signi�ant attention tothe limiting ase, w =1 ; r = 0 that orresponds to a single breather in anin�nitivly long hain of osillators (N !1).27



A seond problem is onerned with the question how many breathersappear after the relatively short time of nonlinear relaxation from the ini-tial state. In this ontext my problem with �xed zero boundary onditionsis signi�antly di�erent from the usually applied �-mode initial values forperiodi boundary onditions. In the periodi ase the �-mode is simulta-neously a normal mode of the linear problem and an exat solution to thenonlinear envelope equation (3.16). Relaxation from this equilibrium stateis initiated by a modulation instability, and the wavelength of the fastestgrowing mode is used to estimate the number of breathers generated duringthe nonlinear phase of instability.In the ase of zero boundary onditions, high frequeny normal modes(2.12), (2.13) do not satisfy the nonlinear envelope equation (3.5). Whenused as initial onditions they relax toward or around a few nearest sta-ble equilibrium solutions (3.16) at t > 0. I expet that the linear analysisould, at best, only qualitatively desribe the evolution of the system. Nev-ertheless, as we shall see, the linear analysis, in ombination with numerialresults, is quite useful for understanding evolution and quasistability ofstrongly nonlinear strutures.Comparing (4.1) to the unperturbed envelope solution  (x; t) =  (x) os!t,we see that the unperturbed phase is equal to zero, �0 = 0, while the unper-turbed amplitude is q0(x) =  (x). The frequeny ! is a onstant given by28



(3.8) and determined by the amplitude of the unperturbed solution. Whenthe amplitude is slightly varied, q(x; t) =  (x) + Æq(x; t), the frequeny ofthe fast nonlinear osillation is also varied. As ! is taken to be onstantthis e�et is represented by the time-varying phase, �(x; t) = Æ�(x; t). Thisphase di�erene an aumulate leading to large values of Æ�(x; t). However,sine equation (4.2) depends on derivatives of Æ�(x; t) but not the phase byitself, it an be linearized by onsidering the derivatives of Æ�(x; t) as �rstorder orretions. This yields a system of two oupled linear equations2!Æqt +  Æ�tt + 2  x (1 + 6� 2) Æ�x +  (1 + 3 � 2) Æ�xx = 0 (4.4)
Æqtt+((1+9� 2) Æqx)x+(4�!2+36� 2+18�  xx+9� 2x) Æq�2! Æ�t = 0(4.5)I �rst onsider the simplest ase of onstant spatial pro�le of the envelope (x; t) =  m os !t, whih orresponds to �-mode with periodi boundaryonditions, whih has the highest nonlinear frequeny shift (3.9) [22, 23℄.This mode is a solution to (3.5) but does not belong to our envelope solutionsbeause zero boundary onditons are not satis�ed in this ase. Setting thespatial derivatives of  (x) equal to zero, (4.4) and (4.5) redue to a system ofoupled equations for Æ�(x; t) and Æq(x; t) with onstant oeÆients. Theyan be solved by letting Æq(x; t) / Æ�(x; t) / exp(st + i k x) whih gives a29



biqudrati equation for s:s4 + 2 [ 36 y+8�k2(1+6 y) ℄ s2 = k2 (1 + 3 y) [ 24 y�k2 (1+9 y)℄ (4.6)where y = � 2m as de�ned in Chapter III.Among the four roots of (4.6) there is an unstable solution for whihRe s is positive in two intervals of k. These intervals are; for small k,k < q24 y = (1 + 9 y) , � > 2�q(1 + 9 y)=24 y, and for large k, k >2, � < �. The seond interval, is beyond the validity of the ontinuousapproximation so i will not onsider it. At long wavelength, � must beapriori less than N + 1 in order to satisfy periodi boundary onditions.Using these inequalities, 2�q(1 + 9 y)=24y < � < N +1, one an onludethat there is a threshold for the modulation instability of the �-mode6 �  2m (N + 1)2�2 > 1 (4.7)Near this threshold the fator 9 y � 1 and has therefore been dropped.Expression (4.7) shows that the �-mode is parametrially unstable if thenonlinear parameter (3.12), for n = 1, is greater than one. If (4.7) issatis�ed, there is a most unstable wavenumber km whih orresponds to themaximum of the growth rate, sm. In the limit of small fm, y � 1, the valuesof km and sm were found in [22℄km = q12�  m; sm = 3� 2m (4.8)30



However, i am mainly interested in the ases of intermediate and largeamplitude envelopes. In order to analyze these regimes all terms followingfrom (3.11) are inluded in (4.6). In the limit of large amplitudes, y � 1,the fastest growing mode has wavenumber and maximum growth ratekm = 1:23; sm = 0:93 q�  m (4.9)In ontrast to the ase of the low amplitude results in (4.8), km is inde-pendent of the amplitude and sm is a linear funtion of  m. Note that thetransition from small to large amplitude takes plae at �  2m ' 1=9 thatorresponds, for � = 0:1, to  m ' 1.The modulation instability of the envelope solutions obtained in ChapterIII requires a more ompliated analysis beause the unperturbed funtions (x) lead to x-dependent terms in (4.4) and (4.5). Full analysis of theproblem an be done on the basis of eigenfuntions satisfying zero boundaryonditions. I limit my study to instability of nonuniform envelope solutionswith respet to short wavelength perturbations whih most generally havethe form Æ�(x; t); Æq(x; t) / exp(s t+ i Z x0 k(x0) dx0) (4.10)with k �  x= ; k2 �  xx= , whih gives a qualitative understanding ofthe e�et of spatial variations. I examine the loal stability of the envelopesolutions assuming that the perturbations 4.9 are loalized in some area31



of width D, k�1 � D � d, where d�1 '  x= is a typial sale of theunperturbed solution, and form a wave paket with entral wave numberk. The growth rate s is then alulated as a funtion of x and k. Theresult indiates what parts of the envelope pro�le  (x) are loally stableor unstable and therefore where the instability an our dependending onthe loal position of the wave paket in x and the loal values of k. Thisapproah does not take into aount the boundary onditions and it is validif the wave paket group veloity vgr is small enough, so that vgr=s � d.Following this program i analyze the stability of a single breather in thelimit of small, amplitude, 9 y << 1, and large amplitude, 9y >> 1, using,respetively, approximations (3.18 ) or (3.19).For low amplitude from (4.8) for the �-mode i have only values of  msuh that s is small ompared to the frequeny ! � 2 of the breather.These slowly varying perturbations an be treated on the basis of a reduedform of equations (4.4) and (4.5) with the terms Æ�tt and Æqtt ignored.Moreover, as an be shown from (3.6),(3.7) the terms proportional to  2xand   xx are proportional to 6� 4m and therefore small in omparison with 2(x) and an be negleted. Among the small perturbation terms i willkeep the two terms proportional to Æqx and Æ�x beause they introdue animaginary ontribution to the dispersion relation. Substituting the WKBpresentation (4.10) into (4.4), (4.5) and introduing, for the low amplitude32



ase, normalizations k1 ! k = (6 �  2m)1=2, s1 ! s = 6 �  2m allows us toexpress the growth rate in the forms21(k1; x) = 14 !2 ( k21 � 2 i k1q6� mffx) ( 6f 2� 1� k21 +3 i k1q6� mf fx)(4.11)where f(x) =  (x)= m. At x = 0, whih orresponds to the peak of thebreather, the growth rate, Re s1, is positive for k21 < 6f(0)2� 1 = 5. In thisase the unstable values of k1 < 2:24 are small and are also out of the rangeof appliability of WKB approximation, k1 >> 1. Note that this situationis essentially di�erent from the ase of the �-mode envelope where solutionsof the form (4.10) are valid at any k ompatible with the periodi boundaryonditions (but still, of ourse, subjet to disreteness limitations).Small imaginary terms in (4.11) may drive a slow instability with thegrowth rate, Re s1 ' (6� 2m)2 for values of x where fx 6= 0. To illustratethis situation the imaginary and real parts of s1 are plotted as a funtionof k1, in Fig. 4.1 at the point where fx is maximum f (max)x = (6�)1=2 m=2and f = 2�1=2. This slow growing mode with s1 ' 0:1 exists in the rangeof wavelengths where both WKB and ontinuous approximations an bevalid. These two onditions an be satis�ed simultaneously in the ase oflow amplitude while at high amplitudes it is impossible. Although at shortwavelengths the mode is loally unstable there is an additional e�et whihslows down its growth and may stabilize it. The e�et is the onvetion33



of the wave paket in (x; k) spae due to expliit dependene of s on xand k. This proess is desribed by the equations _x = �Im s=�k; _k =��Im s=�x. As it is seen in Fig. 4.1 the value of Im s is large ompared tothe growth rate, for k1 >� 1:5 resulting in a fast drift of the paket awayfrom unstable zone to the tail zone where the driving fore of instabilityfx is small. Furthemore, for k1 � 1, where Im s <Re s, we have alreadyseen the WKB approximation fails. The onlusion is that the WKB theorygives no lear evidene that a small amplitude breather is unstable.

Figure 4.1: Dependene of the normalized growth rate, Re s1 (solid line)and Im s1 (dashed line) on the wave number k1, for the ase of a smallamplitude breather.A similar situation ours in the ase of high amplitudes, 9 � 2m >> 1.34



Making use of the the analogy with the large amplitude �-mode results in3.2 one an expet that in this ase the typial values of s are of the orderof ! ' p6� m so all time derivative terms in (4.2) (4.3) are important. Itleads to oupled equations2 s2 Æq +  ( s22 + 2 i kffx � (1=2) k2 f 2 ) Æ� = 0 (4.12)
(s22+3 i kffx+6f 2+3ffx+ (3=2)f 2x � 1� (3=2)k2f 2 ) Æq� 2 s2  Æ� = 0(4.13)where ! is substituted with its limiting value ! ! p6 � m and s is nor-malized as, s2 = s = (6 �  2m)1=2 while the wave vetor k is not normalized.Solving equations (4.12),(4.13) for s2, gives four branhes of s2 (x; k).I will illustrate these results for the most unstable solution. Calulatings2 (x; k) at the peak of the breather, x = 0, yieldss2 (k) = (1=2)1=2q2 k2 � 7 +pk4 � 22k2 + 49 (4.14)The real and imaginary parts of this solution are shown as a funtion ofk in Fig. 4.2. Although the results indiate a fast instability for a largeamplitude breather, the intervals of unstable k are out of the range of ap-pliability of WKB theory or of the envelope approximation. The longwavelength branh of the instability with k < 1:4, is not onsistent with35



the WKB approximation while for the branh with k > 1:6 the wavelengthof perturbations beomes omparable with the distane between osillators.Solutions with k > � would not be allowed due to the disreteness of thehain. The seond derivative term,  xx, ontributes to the stability at max-imum amplitude while destabilazing �rst derivative terms are small. In thezone where fx is maximum and, orrespondingly, fxx is small, similar tothe low amplitude ase, these areas an be a soure of residual instability,generating waves whih then rapidly drift away from the unstable zone.

Figure 4.2: Dependene of the normalized growth rate, Re s2 (solid line)and frequeny, Im s2 (dashed line) on the wave number k around the peakof a large amplitude breather.One qualitatively onludes that stationary solutions for both low and36



high amplitude breathers are suh that the width of their pro�les is om-parable with the most unstable wave lengths (4.8) (4.9), whih stronglyenhanes their stability.4.2 Numerial Observations Of Relaxation Osillations And SymmetryBreakupSine the onvetive harater of the instability and restritions ausedby the onditions of appliability make WKB analysis quite ompliated,numerial analysis is important for verifying my qualitative onlusions.The numerial treatment of stability is based on integration of the 128equations of motion (2.4) for a 128 osillator hain, with initial onditionsqi(0) = q(B)i + Æqi; pi(0) = 0. Funtions q(B)i desribe the unperturbedbreather pro�le and they were hosen either from the ontinuous model inthe form of approximation (3.18) for  m < 1 or as a breather solution ofthe disrete FPU model for  m > 1. Low and high amplitide initial pro�leswere entered in the middle of the hain at x = 64:5. Large amplitudeinitial pro�les obtained from the disrete FPU problem were treated sepa-retely for symmetri and antisymmetri on�gurations. In all ases small(' 10% ) perturbations with the wave length of the fastest growing modefrom (4.8) or (4.9) were added at t = 0 to speed up the instability. The timeof integration was hosen to be 10 times longer then the inverse growth rate37



of the slowest unstable WKB mode onsidered above whih from (4.11) andthe normalization sales as (6� 2m)�2. Results of these alulations showno signi�ant time variations of the initial pro�les over a wide range of am-plitudes, 0:1 <  m < 10. In the ase of large amplitudes a rather suddendeay of the symmetri breather was observed after a time whih was signif-iantly longer than the times above, so i will not disuss the phenomenon inthis hapter. For antisymmetri on�gurations this e�et was not observed.These numerial results on�rm stability of the nonlinear envelope solutions(3.16) with n = 1. A single breather in an in�nite system has a shape sim-ilar to envelope solutions (3.16) with n = 1, in the ase of high amplitudes,w(n;  m) >> 1, and would also be expeted to be stable. In the low am-plitude limit, w(n;  m) < 1, the inequality is equivalent to the ondition ofstability of the �-mode (4.7) suh that the breather would also be stable.The envelope solutions (3.16) with higher numbers of n, n = 2; 3::::, onsistof n peaks whose pro�les are similar to single breathers if w(n;  m) >> 1and n is not too high (n < 25� 30). Thus, one an expet stability of thepeaks with respet to short wavelength perturbations of their shape. Forlong wavelength perturbations, a new e�et appears when the number ofpeaks per wavelength is signi�antly larger than one. In this ase pertur-bations e�etively feel the averaged ( over x ) value of the oeÆients in
38



equations (4.4),(4.5). This results in a long wavelength modulation insta-bility, as desribed by equation (4.6) for the �-mode, but with avaragedvalues of f 2. The long wavelength perturbations do not hange the shapeof individual peaks but lead to the modulation of the peak amplitudes. Inthis ase a modulation instability similar to the instability of the �-modean be observed in my problem with zero boundary onditions. This longwavelength instability is illustrated in Fig. 4.3 and Fig. 4.4 where the en-ergies of osillators ei are plotted for n = 16 and two initial onditions,E = 5 ( m = 0:2) and E = 20 ( m = 0:4), at t = 11800 s and t = 3500 s,respetively. Growing perturbations of initially equal amplitudes with thewavelength � = 64 and � = 32 are well desribed by the theory of the fastestgrowing mode (4.6) if averaging is taken into aount by reduing their am-plitudes to  m = 0:1 and  m = 0:2. In these ases the nonlinear fatorw(n;  m) = 0:4; 0:8 so the peaks are not well isolated from eah other. Theglobal interation gives rise to a long wavelength modulation instability. Insimilar alulations at E = 200, orresponding to value of w(n;  m) ' 2,where the peaks are well loalized and noninterating, an instability wasnot observed. Combining analytial and numerial results one predits thatthe nonlinear envelope solutions are stable to the modulational instabilityin the range of parameters where the nonlinear fator w(n;  m) > 1.
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Figure 4.3: Dynamis of the modulational instability of the periodi equi-librium with many peaks (n � 1). The urves show the pro�le of thenormalized osillator energies ei versus i at a time when a long wavelengthmodulational instability is visible. E = 5; n = 16; t = 11800 s; the estimateof the most unstable wavelength, �m = 64, is in a good agreement with theobserved wavelength.
Sine the initial onditions of muh numerial work are taken to be nor-mal modes of the linear problem they are di�erent from nonlinear envelopesolutions at the same energy. Normal modes are wider and, therefore, theiramplitudes,  i, are less than the amplitudes of orresponding nonlinear so-lutions,  m. If the value of the di�erene � =  m �  i is not too large,� = m � 0:4, a relaxation takes plae in the form of regular osillations40



Figure 4.4: Dynamis of the modulational instability of the periodi equi-librium with many peaks (n � 1). The urves show the pro�le of thenormalized osillator energies ei versus i at a time when a long wavelengthmodulational instability is visible. E = 20; n = 16; t = 3500 s; the estimateof the most unstable wavelength, �m = 32, is in a good agreement with theobserved wavelengh.of  (x; t) around the equlibrium solution of the same symmetry of ampli-tude � . If � is large, then the relaxation follows another senario inwhih  (x; t) osillates around an envelope solution of a di�erent symmetrywith higher values of n. This proess is more favorable beause the equi-librium amplitude of an envelope solution with a higher value of n is lowerand, therefore, loser to the initial amplitude at a given energy. A transi-tion from a regular osillation regime (with onservation of symmetry) to a41



Figure 4.5: Snapshots of osillator energies ei versus osillator number i atsuessive times, illustrating the dynamis of relaxation from an initial statearound the nearest equilibrium state. The dashed line shows the pro�le ofthe equlibrium envelope solution with the same initial energy and symmetry.The ase of regular osillations without breakup of symmetry at low energyE = 0:65; n = 1; pro�les of Ei are shown at t = 0 and t = 1800 s whihorrespond to the initial state and maximum of deviation of the envelopefuntion from the initial state.breakup regime (with hange of n) has a threshold depending on the initialamplitude or, equivalently, the energy of the initial state. The transitionenergy Etr depends on the value of n of an initial normal mode. Numerialresults show that the transition energy Etr, starting from a normal mode,inreases with n, approximately as n2, provided n is not too large. Thisdependene an be explained qualitatively with the use of the nonlinear42



Figure 4.6: Snapshots of osillator energies ei versus osillator number iat suessive times, illustrating the dynamis of relaxation from an initialstate around the nearest equilibrium state. Illustration of the symmetrybreaking at higher energy, E = 1:29; n = 1; the two distrubutions shownare the pro�le having initial symmetry at t = 1000 s and the transition tothe symmetry n = 2 at t = 2000 s.parameter w whih gives a measure of the di�erene between strongly non-linear and almost linear pro�les of the envelope solutions. If w ' 1 thedi�erene is of the order of one also, � '  m, whih roughly orrespondsto the transition from a regular to a breakup regime. From the above itfollows that  tr / n and Etr / n2.These onlusions are illustrated in Fig. 4.5 and Fig. 4.6 where snap-shots of numerial results obtained at low energies and n = 1, initially, are43



given at two times. In Fig. 4.5 the ase of regular osillations with n=1and E = 0:65 is shown. The energy of the individual osillators are plottedversus i, with the equlibrium pro�le marked with a dashed line; the periodof osillations is T = 4000 s. This initial state is lose to the transition tothe breakup regime.

Figure 4.7: The ase of the regular osillations with the initial onditionsE = 1; n = 2 at t = 0 and t = 700 s. The dashed urve gives the equilibriumpro�le.The ase of a symmetry breaking osillation for n = 1 but higher energyE = 1:29 is shown in Fig. 4.6, where a periodi transition to the symmetryn = 2 is observed; the period of osillation is T ' 4500 s. A similarsituation takes plae if the initial normal modes are taken for n = 2, as44



Figure 4.8: The breakup of the initial symmetry n = 2 and transition ton = 4 in the ase of E = 10; snapshots orrespond to (1) t = 0, (2) t = 200 sand (3) t = 1000 s.shown in Fig. 4.7 and Fig. 4.8. The regime of regular osillations is shownin Fig. 4.7 at an energy E = 1, with a period of osillations T = 1350 s.For initial energy E = 10, symmetry breaking is found as illustrated in Fig.4.8. The energy Etr at whih regular osillation regime for n = 2 makes atransition to the symmetry breaking regime, with n = 4 appearing, is aboutEtr ' 2:6 whih is in a good agreement with the estimate Etr / n2.
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CHAPTER 5BREATHER COALESCENCE

After a set of haoti breathers have been formed, on a short time sale, by amodulational instability or breakup relaxation, the breathers oalese, on alonger time sale, into a single haoti breather. This proess has been welldoumented, numerially [14, 18, 19℄, and the proess has been studied inmore detail in [22℄. In fat, the physis is diÆult to understand ompletely,and quantitative omparison of theory, as developed in [22℄, did not agreewith the most detailed numerial results [19℄. Our approah will be to �rstfollow the overall alulation program from [22℄, but extended to inludelarger amplitude breathers where numeris an be onveniently arried out;then to examine, numerially, the various assumptions that enter into thealulations to see if theoretial estimates an be improved.46



5.1 Analytial EstimatesThe basi physial notions are that some number of haoti envelopebreathers are formed, related to the fastest growing mode of the modula-tional instability, initial onditions, and relaxation proess. These breathersare moving, in the manner of their low frequeny soliton ousins, and there-fore ollide with one another. Sine the breathers are not exat nonlinearsolutions to the underlying equations, they interhange energy in the inter-ations, and also take and lose energy against existing bakground modes.In a restrited situation, this proess has been desribed theoretially [24℄,showing that energy is on average transferred from smaller to larger stru-tures. The end result would then be a single large struture. To estimatethe time sale for the oalesene, the time sale �B is onstruted as [22℄
�B ' lvB ' 1nB � vB (5.1)where vB is the breather veloity, and the mean free path l is related in theusual way to the density of breathers nB and the e�etive ross-setion forabsorption of olliding breathers �. The alulation in [22℄ proeeds fromequation (2.15) (without a4 terms) in the form of Hamiltonian equationsfor 	(x; t) and 	�(x; t) introdued through an amplitude funtion similar47



to (4.1) but in a omplex form (x; t) = 12 �	(x; t)e�i!t +	�(x; t)ei!t� (5.2)Droping the terms with the seond time derivatives ( �	 � ! _	) and us-ing the rotating wave approximation (RWA) yields anonial Hamiltonianequations i! _	 = ÆHÆ	� ; � i! _	� = ÆHÆ	 (5.3)where H is de�ned by H = R Hdx with a Hamiltonian densityH = �12 �j	xj2 � 112 j	xxj2 � 6 � j	j4 + 6 � [j	j2j	xj2 + 14(	2	�2 +	2	�2)℄�(5.4)Equations (5.3) desribe slow variation of the envelope and they have theintegrals of motion [24℄H = Z Hdx ; P = � i2 Z (		�x �	�	x) dx ; N = Z j	j2 dx (5.5)the energy, momentum and number of quasi-partiles, respetively. Theseresults are then used to estimate vB in (5.1) from the de�ning quantitiesin (5.5), whih is evaluated in [22℄ within the approximation of a smallamplitude traveling solution, with N !1,	(x; t) =  m exp( ikx� i
t )osh[p6 �  m (x� vB t)℄ (5.6)Expression (5.6) is not an exat solution to (5.3) but satis�es these equationsfor a redued Hamiltonian (5.4) in whih the seond term and last three48



terms are droped. In this approximation 
 is the solution to the dispersionrelation 
 = (3 �=2) 2m � k2=4 while the wave vetork = �vB (! + 
) ' �2 vB (5.7)The veloity vB plays role of the group veloity of the wave paket. Equa-tion (5.7) is equivalent to the usual relationship vB = �
=�k and de�nesk as a funtion of vB. The value of vB by itself is not de�ned in this ap-proah and is onsidered as a free parameter. To de�ne the values of vBan additional argument is used in [22℄, that due to the interation of quasi-partiles trapped inside the breather quasi-equlibrium values of k and vBare established, for whih the Hamiltonian, H = 0. In analogy with thelassial osillator this statement was alled a \virial theorem". Applyingthis theorem vB was found to be a linear funtion of the amplitudevB = q�=2  m (5.8)Note that k postulated in (5.7) is not equal to km obtained in (4.8) from thefastest growing mode of the modulational instability. Instead, the reduedform of the Hamiltonian (5.4) gives (5.6) as an exat traveling solution, forwhih the virial theorem applied to the integral in (5.5) then gives (5.8)and �nally from (5.7) i have, k = p2�  m, whih sales like, and iswithin a relatively small numerial fator of, km = p12�  m. Continuingthe argument in [22℄ the density of breathers nB, as obtained from the49



modulational instability at small amplitude, isnB ' kmax = 2� ' ( 3 � )1=2  m=3 (5.9)and � is taken from a Born approximation for weak sattering to haveproportionality� / �Z Uint dx�2 / �Z  1  2 dx�2 / (  2m d )2 /  2m (5.10)Substituting these salings in (5.1) leads to the saling �B / ��2B where�B = EB=N is the energy density of the breathers. Reent numerialinvestigations of the time sale for oalesene, in an energy range that iseasily aessible numerially, produed the saling for the time required toobtain a single CB [19℄ �B / ��1 (5.11)in ontradition to the small amplitude result (more preisely �B / E�1sine N was held onstant).Sine numerial treatments mentioned above were mostly done for rela-tively large energies, the low amplitude salings (5.8)-(5.10) are not applia-ble to this ase and have to be extended to high amplitudes. I �rst reonsiderthe onept of breather veloity for high amplitude. As desribed above, theredued equations (5.3) based on the Hamiltonian (5.4) without the seondand last three terms, have an exat solution orresponding to the movingbreather given in (5.6). However, one an see from (5.6) that the width of50



the redued breather tends to zero when its amplitude inreases inde�nitelywhile the full solution in (3.16) for a stationary breather desribes a realistipro�le whih has �nite width at any amplitude. This problem raises thequestions whether a nonredued form of Hamiltonian equations (5.3) admitsmoving breather-like solution or whether the terms, inluding derivatives,will lead to the solutions with zero vB. To answer these questions i �nd,below, an exat solution for a moving breather whih satis�es the full a2order envelope equation (2.15).To analyze a moving breather, i will use (4.2), (4.3) and hoose solutionsin the form q(x; t) = q(x � u t); �(x; t) = �(x � ut). Derivatives of thesefuntions with respet to their arguments � = x � ut, are introdued as q0and �0. Substituting these forms into (4.2), (4.3) and taking into aountthat qt = �u q0; �t = �u �0 , yields two oupled ordinary di�erentialequations for � and qq (1 + u2 + 3�q2) �00 + 2q0 (1 + u2 + 6�q2)�0 = 2 u ! q0 (5.12)(1+u2)q00+(4�!2) q+12�q3+9�q(q q0)0+2!u�0q�(�0)2(1+u2+6�q2)q = 0(5.13)Equation (5.12) is linear with respet to the �rst and seond derivatives of� and therefore has an exat solution (without singularity at q = 0)�0 = u !1 + u2 + 3�q2 (5.14)
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Subsituting (5.14) in (5.13), multiplaying by q0 and integrating over � yieldsa �rst integral(1 + u2 + 9�q2) q02 +  4� !2 + !2 u2(1 + u2 + 3�q2)! q2 + 6�q4 = 0 (5.15)where the onstant of integration is hosen to be zero to provide zero bound-ary onditions at in�nity. The frequeny of the moving breather dependson its amplitude and veloity and an be obtained from (5.15) applied tothe point � = 0 where the amplitude q(�) reahes its maximum, qm!2 = (4 + 6�q2m) 1 + u21 + 3�q2m! (5.16)Making use of this result, (5.15) an be rewritten in the form of an energyonserving Hamiltonian h = q02=2+W where the e�etive potential energyW is given byW (q; qm; u) = � 3 � q2(q2m � q2)(1 + 9�q2 + u2)(1 + 3�q2 + u2) "3�q2 + 1� u21 + 3�q2m#(5.17)An analysis of the expression in square brakets shows that if the speed ofthe breather is not too high,u < ( 1 + 3 � q2m )1=2 (5.18)the e�etive potential energy is negative at 0 � q � qm and graphs of W (q)are similar to the urve shown in Fig. 4.1 for the ase C1 = 0. Solving for q0from (5.15) and integrating over � yields the breather amplitude q(�) whih52



looks similar to the pro�le of the standing breather (3.17). If the inequality(5.18) is not satis�ed, then the e�etive potential energy (5.17) beomespositive in some viinity of q = 0, when (1 + 3�q2m)1=2 < u < 1 + 3�q2m; itis positive along the entire interval 0 < q < qm, when 1 + 3�q2m < u. Inboth ases there are no trajetories orresponding to breather-like solutionsso equation (5.18) is a neessary and suÆient ondition for the existaneof a moving breather with arbitrary amplitude.The new exat solution represents a generalization of the previous so-lution (5.6), (5.7) to the ase of high amplitude breathers. The importantresult is the dependene of k on x and t desribed by (5.14). The wavevetor k = �0 has approximately the same value as given by (5.7) in thetail zone of the breather and sharply dereases near the peak droppingdown to 2u=(3�q2m). Although the new solution is an exat solution to thefull a2-order equation (2.15), the value of veloity is a free parameter withsome weak restrition (5.18). Similar to the alulation of vB in the smallamplitude ase (5.8), i make use of the virial theorem based on (5.4) toestimate the e�et of large amplitudes on breather veloity. Expressing 	and 	� in (5.2) in terms of q(�) and �(�) and substituting into (5.4) givesa Hamiltonian density as a funtion of q(�) and k(�) � �0(�)H(qm; u; �) = � 12 k2 q2 ( 1+3�q2 ) � 12q02( 1+9�q2) + 3 � q4 (5.19)The seond term in (5.4) represents the a4 term (1=24)  xxxx in (2.15). Sine53



solutions (5.14) , (5.15) were obtained from a redued a2 version of equation(2.15), this term is not inluded in (5.19) either. It is possible to evaluatethe �rst integral in (5.5) and formulate the virial theorem, H( qm ; u ) = 0,by using the identity H = Z H d� � Z H dq=q0 (5.20)

Figure 5.1: Dependene of the breather veloity vB on its amplitude  m,obtained from the virial theorem. The horizontal line shows asymptotivalue of vB and  m !1.The result after some algebra and a numerial integration over dq, givesthe veloity u � vB as shown in Fig. 5.1. For low amplitude the veloity is54



in agreement with (5.8) obtained with the use of (5.6), while for high ampli-tude we see that vB beomes asymptotially onstant. The remaining quan-titives that are required to obtain the saling (5.1) at high amplitude areobtained in a straightforward way. Taking the wave number of the fastestgrowing large amplitude mode, from (4.9), we �nd that nB / kmax = onst,independent of  m, whih is onsistent with the asymptoti assumption ofvB = onst if we admit the above mentioned relationship between k andkm. From the asymptoti large amplitude expansion of I, in (3.21), wehave  m / E1=4 (with n independent of  m and rougly half the energyin the proto-breathers). Performing the integration in (5.10) for the highamplitude ase when the width of the breather d ' 5 =onst, we �nd� /  4m / E (5.21)Combining the results of vB and nB independent of initial E, with (5.21),in (5.1), this gives, at the start of the oalesene, that �B / E�1 I must,however, follow the time evolution of the aolsene proess until a singlebreather is formed. To do this we note that the time onstant is governedby n�1B (dnB=dt) = nB�vB sine nB dereases as E�1B and � inreases asEB, that is, the total energy in the breathers remains nearly onstant, thennB� = onst during the oalesene. As found numerially (see below)vB is relatively onstant during this proess, and thus we onlude that55



n�1B (dnB=dt) = 1=� , a onstant, during the deay. Thus the �nal propor-tionality for the saling of oalesene, assuming EB / E, is�B / E�1 (5.22)Comparing (5.11) with (5.22) we see that the asymptoti time sale foroalesene has the same energy saling as the numerial oalesene timeat intermediate energies. This is somewhat surprising, as the numerialresult lies between the low energy and high energy asymptotes.5.2 Numerial ResultsTo investigate the validity of my various approximations i perform nu-merial alulations on the disrete osillator hain. In this way we notonly hek the approximations that are required to obtain solutions to thenonlinear envelope equations, but also take into aount disreteness e�etswhih beomes inreasingly important at short wavelengths. I �rst enquireif the deay is haraterized by a single time onstant, i.e. if the total num-ber of breathers NB obeys (1 = NB)(dNB = dt) = 1 = � , a onstant. Takingtypial ases of initial energy E = 20 ; 50 in mode  = 120, i plot lnNB vst, in Fig. 5.2 and Fig. 5.3, respetively. After an initial short period of themodulational instability, the resulting deays are straight line, indiatingthe onstany of � . 56



Figure 5.2: Numerial dependenes of the number of breathers, lnNB(t),versus time. The straight line urves indiate the onstany of the deaytime � during the oalesene from 8-12 breathers to two breathers. The�nal oalesene to one breather has less statistial auray. Initial energyE = 20; n = 9.This onstany of � in the deay proess was found to hold well for initialenergies 20 � E � 100, whih is a typial intermediate energy range. Athigher energies there is a somewhat longer time for the �nal oalesenefrom two breathers to one. Using results like those in Fig. 5.2 and 5.3 theresults in Fig. 5.4 are obtained, in the range 20 � E � 250. A straight linegives a power law �t to the oalesene time �B vs energy, with a best �tgiving �B / E�1:12. This is almost the same as the saling of �B / E�1:19in [19℄ using a somewhat more qualitative riterion for �B. Note that �B is57



Figure 5.3: Numerial dependenes of the number of breathers, lnNB(t),versus time. The straight line urves indiate the onstany of the deaytime � during the oalesene from 8-12 breathers to two breathers. The�nal oalesene to one breather has less statistial auray. Initial energyE = 50; n = 9not the same as the time onstant � . Typially there are 8-9 initial proto-breathers whih oalese, with the time �B being the time neessary fora single haoti breather to be established. Sine in all ases the initialonditions have most of the energy in mode 120, the 8-9 initial peaks tendsto be a strong initializing e�et for the proto-breathers, as already disussedin Chapter IV.A further on�rmation of our piture of the oalesene proess is seen inFig.5.5 and Fig. 5.6. In Fig. 5.5, for the ase of E = 20, the motion of the58



Figure 5.4: Numerial results illustrating the dependene of the deay timeln �B versus initial energy lnE obtained from results at various energies asdesribed in Fig. 5.2, 5.3.largest peak is followed. During the initial stage of proto-breather formationthe motion is not well de�ned as early unstable motion and ollisions donot onserve a single proto-breather having the maximum amplitude. Attime of 104 s the largest breather is established and grows in energy withassoiated inreasing veloity. The veloityat relatively large amplitude then remains fairly onstant in the range2� 104 s � t � 4� 104 s, after whih time Fig. 5.2 indiates the existaneof a single dominant breather. As seen in Fig. 5.6 the energy of the largestbreather is ontinuing to grow, statistially, during this time. For 4 � 10459



Figure 5.5: Time dependene of the osillator number imax de�ned as theposition of the osillator having a maximum energy in omparison with allother osillators at a given time t. After 104 s, when a largest breather isestablished, it shows the position of that breather.s � t � 105 s, in Fig. 5.5 the single haoti breather gradually slows downin a somewhat uneven fasion. The explanation of this e�et is not withinthe envelope theory but an be quantitatevely understood by two e�ets,the well known pinning e�et due to the disreteness [18℄, and the ontinualinteration with bakground modes ontaining a total energy of the orderof the breather energy. As seen in Fig. 5.6, during this period the mainbreather energy is growing slightly. The breather is taking energy from highfrequeny modes with similar symmetry and giving energy to low frequeny60



Figure 5.6: Time dependene of the maximum energy eimax of the osillatorsdesribed in Fig. 5.5. After the largest breather is established it orrespondsto the energy of the osillator at the peak of the breather.modes that do not have this symmetry. As desribed previously [19℄ andwill also be developed in Chapter VI, the breather will deay at longertimes, as energy ontinues to be transferred to low frequeny modes andequipartition is approahed. Similar dynamis ours at higher energies,but more rapidly so that the phenomena are not as learly observed.
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CHAPTER 6BREATHER DECAYIn the usual piture of breather stability, the physial mehanism by whihthe breather loses stability is that the breather frequeny beomes resonantwith a linear normal mode [15, 16, 17℄. This explanation is not diretlyappliable to my problem as the breather frequeny is higher than the high-est mode; e.g. for E = 50 ( � = 0:1; N = 128 ) the CB has a frequeny!B = 2:62 while the highest mode frequeny is 
h ' 2. However, we knowthis breather is unstable (a CB), as it must have been formed in the haotiportion of the Hamiltonian phase spae, sine it was formed from a few ini-tial modes.Within the usual theory the proess then beomes quite subtle,as it depends on the relatively small ontinuous spetrum of the haos.Although the dominant struture is the CB, the mode spetrum, inwhih the CB an be deomposed, plays an important role. For energytransfer from low frequeny to high frequeny modes it was shown that thestohastiity developed in low frequeny beat osillations ould transfer en-ergy to the high frequeny modes via the Arnold di�usion mehanism. The62



key requirement for energy transfer on a time sale that is not exponen-tially slow is that the beat osillation frequeny be as high or higher thanthe mode (or beat mode) to whih the energy is being transfered [9℄. Ina subsequent paper [20℄, it was found that the saling with energy densityof the time to reah equipartition an be predited from that mehanism.The proportionality Teq (low to high) / (E=N)�3 was predited and on-�rmed numerially. In [19℄ the same formalism has been used to numeriallypredit the saling Teq (high to low) / (E=N)�2. However, the preditedestimate of the time to equipartition was nearly two orders of magnitudeshorter than the numerial result. Our urrent study of breather dynam-is has revealed that the method was not applied orretly in [19℄ whenthe dominant dynamis is the breather, rather than the normal modes. Asstated in [19℄ \We might expet a signi�ant underestimate of Teq beausei am not expliitly taking into aount the e�et of the CB". In fat, re-examining the beats in the high frequeny normal modes indiates that thebeat frequeny is given by 
B = !B � 
h (6.1)i.e. the di�erene between the frequeny loked to the breather and thebakground free normal modes. The interation is, of ourse, with the highfrequeny normal modes with the breather symmetry, and so we an take
h ' 2. For E=50 with !B = 2:62 we �nd, in Fig. 6.1, the dominant beat63



frequeny 
B ' 0:6, whih is lose to the value 
B ' 0:62 given by (6.1).

Figure 6.1: Time dependene of the energy of normal mode Ej for j = 121and j = 122 during the time interval 50000 s< t < 50050 s when a singlehaoti breather is well established (E = 50; n = 9).The key assumption in the alulation is to require, for fast Arnolddi�usion [9℄, that 
B � Æ
l (6.2)where Æ
l is the spread of mode frequenies to whih energy an be trans-ferred. For transfer to low-frequeny modesÆ
l = �ÆlN (6.3)
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where Æl is the number of low-frequeny modes whih are taken to or-respond one-to-one with high-frequeny modes, Æk , Æl = Æk. To es-timate the energy transfer i transform the Hamiltonian (2.3) to normalmodes, using (2.8) and (2.9), and then introduing the anonial ation-angle variables ( I; � ) through the transformation Qj = q2 Ij = 
j os�jand Pj = q2 Ij 
j sin�j we obtainH =Xj 
jIj +  �8N + 8! Xi;j;k;lG(i; j; k; l)q
i
j
k
lIiIjIkIl ang(ijkl)(6.4)where ang(ijkl) � os�i os�j os�k os�l. The oeÆients G, as alu-lated in [3, 4, 5, 6, 7, 8, 9℄ areG(i; j; k; l) =XP B(i+ j + k + l) (6.5)where P represents the eight permutations of sign of j; k and l and thefuntion B(x) takes the value 1 if the argument is zero, -1 if the argumentis �2(N + 1), and zero otherwise. The seletion rule (6.5) follows from thequatri nature of the oupling. Taking the derivative of H with respet toa high frequeny angle, we obtain energy transfer from any high frequenymode to all aessible low frequeny modes in the formdEjdt ' Cj
j  �N ! Cl Æl Ej El (6.6)The quantity ClÆl is redued from the quarti sum by the following. Thederivative redues the sum by one index, and the seletion rule (6.5) by65



a seond index. The sum runs over some (Æl)2 modes. Assuming everyquarti term in this sum is typially of the same size and taking the phasesto be random, then the e�etive number of terms is ClÆl where Cl wasestimated in [20℄ to be Cl = 1=4. The quantity Cj is an eÆieny of energytransfer by the Arnold di�usion mehanism, whih must be less than 1/2(see [1℄) and we take Cj = 1=4 for de�niteness. Note that both fator Cland Cj were omitted in [19℄ whih ontributed to the underestimation ofthe equipartition time in that thesis. However, my main reworking of thatalulation is a new determination of Æl from (6.2) and (6.3) using 
B from(6.1).From (3.20) we alulate EB( m) and from (3.8) we approximate !B,both for n = 1 (a single breather). From these results, and using (6.1) weobtain a graph of 
B(EB) as given in Fig. 6.2 on log-log sale, whih weompare with numerial results for 
B.We see that over the main range of energies investigated, we �nd, approx-imately, 
B / EB (slope of unity) and furthermore we have an approximatevalue 
B ' 0:2�EB. Substituting this, in (6.2), with the equality, and theresult in (6.3) we have Æl = N� 0:2 � EB (6.7)Sine, within my approximation, dEj=Ej = dEB=EB, (6.6) an be rewrit-ten, 66



Figure 6.2: Theoretial urve and numerial points illustrate the depen-dene of beat frequeny, ln
B, on energy, lnEB, indiating a nearly linearproportionality in the energy range investigated.dEBE2B = �0:2 � Cj Cl 
j �N N� El dt (6.8)As in previous work we integrate from EB(initial) to Ed=N , where d = n(init)bis the initial number of osillators in the breather, and El from zero to E=N .Using the simplest assumption that El(t) = (t = Teq) E=N , a di�usiveproess, and taking d ' 5, we obtainTeq ' 80 �5  N�E!2 (6.9)where i have substituted Cj = Cl = 1=4 and 
j = 2. I have obtained the67



saling Teq / ��2, as found numerially in [19℄. For � = 0:1; N = 128 andE = 50, Teq ' 3:3 � 104. This is about a fator of �ve shorter than the timeof Teq ' 1:6� 105 s reported in [19℄

Figure 6.3: Time dependene of nos(t). The horizontal lines are theoretialasymptotes
There are various arguments to onlude that we have somewhat un-derestimated the time to equipartition. Partiularly, we have not expliitlyonsiderd the ompliated proess, at intermediate times when the prinipleCB has been formed but not deayed, and is transfering energy from highfrequeny modes, that are not part of the breather, to low frequeny modes,68



Figure 6.4: Time dependene of neff (t). The horizontal lines are theoretialasymptotesusing the breather as a atalyst for the transfer. To see these e�ets i re-peat, in a slightly di�erent form from [19℄, omputations of nos and neff ,given in Fig. 6.3 , 6.4, for E = 50, over a time sale in whih the variouslonger time sale dynamial proesses an be seen.The oalesene time period is seen for t < 2 � 104 s during whihnos is dereasing rapidly. This is followed by a period (�t � 105 s) inwhih a single breather is �rst inreasing and then dereasing slowly asenergy is transferred from high frequeny modes to low frequeny modes.Finally there is the more rapid inrease in nos, during whih time the69



breather energy deays, until equipartition is reahed at roughly the timet ' 3 � 105 s. An average over 10 initial onditions gave the value ofTeq ' 1:6� 105 s, reported in [19℄. The equipartition level at nos ' 0:7 andneff ' 0:6 an be explained by utuations, as desribed in [12℄ and [18℄.There are some subtlties, not reported in those referenes, whih i desribein Appendix D. I have ontinued the numerial alulation to t = 107 s and�nd the equipartition values to be maintained very losely.

70



CHAPTER 7CONCLUSIONSA hain of equal masses oupled to nearest neighbors by nonlinear springshas a very interesting dynamis, with quite di�erent behavior depending onwhether the energy is initially in the low or high frequeny part of the al-lowed spetrum. In partiular, the Fermi-Pasta-Ulam (FPU) system, with aquarti hard spring nonlinearity, has been extensively studied. Most of theinvestigations, both theoretial and numerial, have taken the initial ondi-tions to be in a low frequeny linear mode or modes in whih neighboringosillators are mostly in phase. The proess by whih a resonant interationof a few low frequeny modes an lead to loal superperiod beat osillationsthat stohasti, transferring energy to high frequeny modes by di�usion,has been well studied.In ontrast, if the energy is plaed in a high frequeny mode or modes, forwhih neighboring osillators are primarily out of phase, a more ompliateddynamis ensues. High frequeny mode initial onditions have phase sym-metry of neighboring osillators lose to that of a loalized exat breather,71



but have a di�erent amplitude pro�le. The resulting dynamis onsistsof three stages. First there is an initial stage in whih the mode breaksup into a number of breather-like strutures. Seond, on a slower timesale, these strutures oalese into one large unstable struture, alled ahaoti breather (CB). Sine a single large CB losely approximates a stablebreather, the �nal deay stage, toward equipartition, an be very slow.Considerable insight into the behavior of a nonlinear osillator hain,starting from high frequeny initial onditions, an be obtained by intro-duing an envelope funtion for the displaements of the osillators. Theinitial onditions for the envelope only ontain signi�ant long wave lengthperturbations. For the envelope funtion an expansion is then possible toobtain a nonlinear partial di�erential equation (PDE) whih approximatesthe behavior of the disrete system. Low-order expansions of this type pro-due PDEs that have integrable solutions in the form of envelope solutions,analogous to the solutions produed from low-frequeny initial onditions.However, initial onditions hosen to be lose to a high frequeny mode ofthe linear system, give envelope pro�les far from those of breathers.For the quarti FPU hain with �xed ends i have obtained PDE's forthe envelope funtion of the disrete hain, Taylor expanded to fourth orderin the separation between osillators. The resulting equations have beensolved to obtain nonlinear periodi strutures similar to isolated breather72



solutions. The relationship between struture amplitude and width havebeen obtained, showing that the width dereases with the amplitude at lowamplitude and beomes asymptotially onstant at high amplitude, analo-gous to the behavior of isolated stable breathers.I have examined the stability of the nonlinear strutures to perturba-tions. The analysis beomes omplated due to spatial variations. Howevera loal analysis of the growth rate of the modulational instability indiatesthat, for wavelengths whih satisfy the Taylor expansion, the perturbationsonvet away faster than they grow, thus e�etively stabilizing the modes.This result is in a ontrast to the highest mode with periodi boundary on-ditions (�-mode), whih has a uniform amplitude envelope solution whihbeomes unstable at a partiular energy. For energies suÆiently low that anormal mode initial ondition is relatively lose to the equilibrium, a linearstability analysis is reasonable. In this ase the most unstable uniform ini-tial distribution is below the stability boundary, and therefore stable. Thenormal mode initial onditions at intermediate or high energies are far fromthe nonlinear equilibria with the same symmetry , and therefore subjet tolarge amplitude relaxation osillations. Underlying stability onsiderations,and the proximity of equilibria with other symmetries, lead to breakup ofthe initial symmetry, if the energy is suÆiently high. The number of proto-breather peaks established in this proess, starting from a symmetry of a73



few initial peaks, is usually larger than the initial number of peaks, butdepends on the energy. The partiular ase studied in [19℄, and also inthis thesis, of n = 9 ( = 120) led to resultsof 8-12 proto-breathers in theenergy range 20 < E < 200. This result an be qualitatively understoodby a balane between a minimizing of the osillation amplitude within apeak with a tendeny for the peaks to remain isolated. The one situation inwhih the modulational instability theory an be applied to spatially vary-ing equilibrium pro�les is for an initial n relatively large but at not too highan energy. In this ase the instability wavelength is long enough that thefores driving it an be averaged over a number of peaks. The uniform am-plitude instability theory predits the k-value km / q� <  2(x) > and thegrowth rate, sm / � <  2(x) > where the spatial average over x replaes 2m, as desribed in Chapter IV. At high energies km = 1:23 suh that thepredited wavelength for maximum growth is omparable to the breatherwidth and therefore the averaging is not valid.
After a set of quasi-stable proto-breathers are formed, they move slowlyin random diretions, olliding with one another. In this proess the proto-breathers an pass through eah other or be reeted, losing or gainingenergy in the interation. On average the large strutures absorb energyfrom the smaller ones, as expeted from general theoretial onsiderations.74



The time onstant for oalesene into a single haoti breather (CB) was es-timated in [22℄ from the relation �B ' (NB �vB)�1 where NB is the breathernumber, � a ollision ross-setion for absorption, and vB a harateristiveloity. Using the proedure, extended to higher energies, i obtained rea-sonable agreement with the numerial salings of�B / E�1. Furthemorei demonstrated that � � NB(dNB=dt)�1 is essentially onstant during thedeay, suh that �B / � , in agreement with my theoretial predition.To alulate the saling and the time Teq for the CB deay, to obtainenergy equipartition, i adopted a theory developed for stohasti transferof energy from low-frequeny to high-frequeny modes by means of haotibeat osillations [20℄. For transfer in the reverse diretion the relevant beatfrequeny is given by the relation 
B = !B � 
h, where !B is the breatherfrequeny, !2B ' 4 + 6� 2m, and 
h ' 2 for a high frequeny mode.Using this saling and the theoretial relation between E and  m, i preditthat Teq / ��2, as found numerially for varying E and onstant N , andfurthermore were able to alulate a value of Teq for E = 50 to withina fator of �ve of the numerial value. I ould also qualitatively explainthe rather longer times found numerially. The numerial equipartitionvalues of nos ' 0:7 and neff ' 0:6, for osillators and modes, respetively,agreed with the analyti values and furthermore remain quite onstant fornumerial integration times a fator of 10 longer than required to �rst obtain75



the equipartition values.I onlude that the general proess, by whih the energy initially plaedin a high frequeny mode reahes equipartition among modes, is under-stood. The time-sales for the longer-time proesses an also be alulated, approximately. The physial mehanism explains why the transfer of en-ergy from high frequeny to low frequeny modes is slower than the reversetransfer. It also sheds light on the interesting question of whether nonlin-ear haoti proess will tend to reate oherent loalized strutures. Theanswer, at least within the ontext of this study, is that suh loalized stru-tures an form transiently , but the ultimate most-probable state is that ofequipartition among the system modes. I do not address the question ofwhether long-time Poinare reurranes an our in suh nondissipativesystems, but any suh reurranes in high-dimensional systems would bebeyond any numerial investigation time.
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APPENDIX AASYMPTOTIC EXPANSION OF I(Y )Expressing (3.11) in terms of y = 6� 2m and making straightforward trans-formations yieldsI(r; y) = 2� Z �=20 d�psin2 � + r2 + 18y� Z �=20 d� sin2 �psin2 � + r2 1(q1 + 9y sin2 � + 1)(A:1)Applying an asymptoti expansion at r ! 0 for the �rst integral and puttingr = 0 in the seond one givesI(r; y) = 2� ln 4r + 18 y� Z �=20 d� sin�q1 + 9y sin2 � + 1 (A:2)After a few subsitutions the integral is alulated analytially yielding asymp-toti expression for I(r; y)I(r; y) = 2� ln 4r + 6py� arsins 9y9y + 1 � 1� ln(9y + 1) (A:3)
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APPENDIX BENERGY OF THE NONLINEAR ENVELOPE SOLUTIONSExpression (2.3) for energy H an be rewritten in terms of envelope funtion i(t) = (�1)i qi(t):H = N+1Xi=0 " 12 _ i2 +  2i +  i+1 i + �2 (  4i + 3  2i+1 2i + 2  3i+1  i + 2  i+1  3i )#(B:1)Substituting Taylor's expansion (2.14) and olleting terms proportional todi�erent powers of a yields:H = 1a Z (N+1)a0 dx f 12  2t + 2 2 + 4 �  4 + a (  x + 7 �  3 x) +a22 [   xx + � (7  3 xx + 9  2 2x)℄ +a36 [  xxx + � ( 6   3x + 7  3 xxx + 27  2  x  xx)℄ +a424 [   xxxx + � (7  3  xxxx + 27  2 2xx + 36   2x  xx + 36  2  x  xxx)℄g(B:2)Introduing the dimensionless variable x! x=a, performing an integrationby parts and taking into aount boundary onditions  (0; t) =  (N +80



1; t) = 0 yieldsH = 112[ 2x(0)�  2x(N + 1)℄ + 124[ x xx(0)�  x xx(N + 1)℄ ++ Z N+10 dx f 12  2t + 2 2 + 4 �  4 � 12 2x � 6�  2 2x ++ 124 [  2xx + � (12  2 2xx + 6   2x  xx)℄g(B:3)Applying this expression for the harmoni dependene  (x; t) =  (x) os!tand averaging over time in aordane with os2 !t = 1=2; os4 !t = 3=8givesH = 124[ 2x(0)�  2x(N + 1)℄ + 148[ x xx(0)�  x xx(N + 1)℄ +14 Z N+10 dx f !2 2 + 4 2 �  2x + 6 �  4 � 9�  2 2x ++ 124 [2  2xx + � (18  2 2xx + 9   2x  xx)℄g(B:4)Substituting (3.16) into (B.4) and ignoring terms whih originate fromthe forth order a4 terms yields equation (3.20) for the energy of the system.For the ase of a strongly nonlinear envelope, putting, r = 0, allows us toexpress energy asE = (2 n  m=q6� )Z(y) (B:5)where y = � 2m andZ(y) = Z �=20 d� (1 + 9 �  2m sin2 �)1=2((3 �  2m sin3 � + 2 sin� ) (B:6)
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The integral Z(y) is alulated exatly, givingZ(y) = 2524 + 98 y + (23 + 234 y + 243 y2) artan( 3 py)72 py (B:7)
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APPENDIX CCONDITIONS OF VALIDITY OF a2-APPROXIMATIONAnalyti results in Chapter III are based on the redued form (3.5) in whihall terms proportional to a4 and higher powers of a are dropped. I nowdisuss the validity of this approah by examining (3.1) whih inludes allterms of order a4. Solving (3.1) numerially and omparing results with theorresponding solutions to (3.5) allows us to �nd the domain of validity of(3.5) and, more generally, of the ontinuous approximation.Comparing linear terms one onludes that the redued linear form of(3.1) has one additional term, (1=12) xxxx, with respet to linear equation(3.2). Its solutions with zero boundary onditions at x = 0 and x = N + 1have the same form as (3.3) but the eigenfrequeny ! is higher than givenby (3.4),!2 = 4� q2n + q4n = 12; qn = � n=(N + 1) (C:1)due to the fator q4n = 12 whih orresponds to the next term in Taylor'sexpansion with �n=(N + 1)� 1 (j =  = N + 1� n).Despite the omplexity of the nonlinear equation (3.1) it has an exat83



�rst integral whih an be obtained by myltiplying (15) by  x and integrat-ing over x. The result of the alulation gives(�!2 + 4)  2 + (1 + 9 �  2) ( x2 + (1=6)  x  xxx � (1=12)  xx2) ++� (6  4 + 3   x2  xx + (3=8)  x4) = C1 (C:2)Choosing, C1 = 0, we selet the lass of loalized, breather-like solutionsfor a hain of osillators that is in�nitively long (N ! 1). The breatherenvelope funtion has one maximum,  m, whih is taken to be in the middleof the hain at x = 0, whih is the origin of the new referene frame, and ! 0 at x! �1. Applying (C.2) at x = 0, with  x(0) = 0;  xx(0) < 0,yields an equation for the eigenfrequeny!2 = 4 + 6 �  2m � (1=12) (1 + 9 �  m2) fxx(0)2 (C:3)where f(x) is the normalized form of  (x). The result is that breatherfrequeny, alulated from (3.1) to order a4, is less than the value (3.8),found from the redued (3.5) to order a2. Note that in the ase of linearmodes (C.1) the a4 term auses an opposite e�et of an inreased frequeny.After substitution of (C.3) into (C.2) the fator fxx(0) plays the role of aneigenvalue. It is found numerially by applying a shooting method to (C.2)and solving the boundary value problem with the boundary onditions, (� 1) =  x(0) = 0. Instead of a boundary ondition at in�nity, theseonstraints are applied at some distant points �x0. This is possible due to84



the existane of analyti asymptoti solutions at x! �1 where  (x)! 0and, orrespondingly, all � dependent terms in (C.2) an be omitted. Thisleads to the exponential pro�le for the breather tail (x)! C exp(��jxj) x! �1 (C:4)where the rate of deay, �, is determined by substitution of exponentiallysmall (C.4) into the equation (C.2) with �-terms ignored, obtaining�2 = q36 + 72 �  m2 � fxx(0) (1 + 9 �  2m) � 6 (C:5)Expression (C.5) is valid if ( 1 + 9 �  2m) fxx2(0) < 72 �  2m or, equiva-lently, !2 > 4. It is worth mentioning that there exists an exat universalrelationship between ! and � whih is valid to all orders of a. Indeed, sine (x) ! 0 at x ! �1, this asymptoti behavior is desribed by the linearversion of the basi equation (2.4). Substituting the in�nite Taylor's series(2.14) into this linear equation and assuming an exponential law of deay(C.4) yields the universal relation! = 2 osh �2 (C:6)This expression is based on the summation of all terms in Taylor's expan-sion and, orrespondingly, it represents an exat result whih an also beobtained from the disreet FPU �-model.The fator fxx(0) is used to estimate the half-width of the bulk envelopefuntion as � ' jfxx(0)j�1=2, while ��1 desribes the half-width of the tail.85



Before numerially solving (C.2) i reprodue analyti results for a breatherderived from equation (3.5). The seond derivative of (3.17) at x = 0 isfxx(0) = � 6 �  2m = (1 + 9 �  2m) (C:7)As is seen from both (C.6) and (3.2) in the a2 approximation, ��1 =(6 �  2m)�1=2. The fator �, alulated from (C.7), equals ��1 in the smallamplitude limit and beomes large, � = (3=2)1=2, in the strongly nonlinearregime, indiating that, for large amplitude, the breather envelope funtionhas a two sale struture.

Figure C.1: Dependenes of !B on breather amplitude,  m; the solid urvesorrespond to a4 approximation, the dashed urves to a2 approximations.
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Figure C.2: Dependenes of � and ��1 on breather amplitude,  m; thesolid urves orrespond to a4 approximation, the dashed urves to a2 ap-proximations.More detailed quantitative information obtained by numerial integra-tion of (C.2) is presented in Figs. C.1, C.2 whih illustrates dependenes of!, � and ��1 on  m in both a2 and a4 approximations.The breather pro�les desribed by (3.17) in a2 approximations and morepreise a4 results based on numerial integration of (C.2) are illustrated inFig. C.3 for a few typial values of  m. Figs. C.1, C.2 , C.3 show thatthere is no signi�ant di�erene between the a2 and a4 approximations upto  m ' 2 whih an be onsidered as the limit of appliability of equation(3.5) and the solution in (3.17). Analytial small amplitude approximation87



Figure C.3: Comparison of the breather pro�les obtained in a2 approxi-mation (eq. (3.17) - thin solid urves); (eq. (3.18) - dashed urves) andin a4 approximation (eq. (3.1) - thik solid urves) for three values of theamplitudes; (a)  m = 0:5, (b)  m = 1, ()  m = 10.(3.18) is in a good agreement with the numerial urves at lower amplitudes, m � 0:5.
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APPENDIX DASYMPTOTIC VALUES OF ne� AND nos INEQUIPARTITIONThe e�etive number of normal modes ontaining energy is de�ned by:neff = 1N exp 24� j=NXj=1 ej ln ej35 (D:1)where ej = Ej=Eh are the normalized linear energies of the normal modesEj = 
j(Q2j + P 2j ) (D:2)where Eh = PN1 Ej given by (2.7). Only the quadrati terms in the potentialenergy are taken into aount in (D.2) so that Eh is not total energy Eand not exatly onserved during the relaxation. The e�etive number ofosillators ontaining energynos = 1N exp "� i=NXi=1 ei ln ei# (D:3)is based on the normalized osillator energies ei = Ei=E whih inludes allterms so that PN1 Ei is onserved exatlyEi = 12pi2 + 14[(qi+1 � qi)2 + (qi � qi�1)2℄ + �8 [(qi+1 � qi)4 + (qi � qi�1)4℄ (D:4)
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Depending on the relative variations of energies ei;j, from one mode orosillator to another, the values of neff or nos vary in the range from 1=Nto 1. The upper limit orresponds to equipartition state where all ei and ejare the same and equal to 1=N . Numerial urves plotted in Fig. 6.3, 6.4, forN = 128 and E = 50 give asymptoti values at t !1 of neff = 0:61 andnos = 0:715, whih are lower than the upper limit values nos = neff = 1,as expeted due to the utuations of energies ei;j aused by interationbetween modes (osillators). In order to alulate the e�et i introdue adeviation Æei;j from equipartitionei;j = ei;j + Æei;j (D:5)Subsituting (D.5) into (D.1) or (D.2), expanding the logarithmi funtion,whih holds both for modes and osillators, as ln(1 + Æei=ei) = Æei=ei �(1=2)(Æei=ei)2 and performing the summation over i yields
neff = nos = 1N exp f�Ne ln e�NÆe2=(2e)g = exp f�NÆe2=(2eg (D:6)Taking e = 1=N and making the assumption of normal statistis thatfor eah normal mode Æe2 = e2 (this is on�rmed by alulations), givesan asymptoti value nos = neff = exp(�0:5) = 0:61. This alulationillustrates why the result does not depend on the number of osillators if Nis suÆiently large and is in apparent good agreement with the numerial90



simulation for neff , but not for nos.For an alternative perspetive, from statistial mehanis we note thatthe sums on the R.H.S. of (D.1), (D.2) an be treated as ensemble aver-ages of the funtion e ln e (if, of ourse, modes (osillators) are statistiallyindependent) e ln e = 1N i=NXi=1 ei ln ei (D:7)The L.H.S of (D.7) is alulated as a mean value of e ln e averaged overaesible states of the normal mode (osillator) whih are smoothly dis-tributed in the phase spae due to energy exhange with the rest of theN � 1 modes. They play the role of a heat reservoir while the total energyof the ombined system is onserved. In this situation a anonial distribu-tion an be used to desribe probabilities of the di�erent states of a singlenormal mode (osillator).For the normal modes the anonial distribution has a formdP = 1Z expf�Ej(P;Q)T g dP dQ (D:8)where dP is the probability of �nding the mode in the state P , Q, and thepartition funtion Z is de�ned by the normalization onditionZ = Z 1�1 Z 1�1 exp f�Ej(P;Q)T g dP dQ (D:9)The e�etive temperature of the heat bath T is hosen suh that Ej = E=Nwith Ej given by (D.2). Performing the integration over P and Q yields an91



expression for Z. The mean value of Ej is then alulated asEj = 1Z Z 1�1 Z 1�1 EJ(P;Q) exp f�Ej(P;Q)T gdP dQ � T (D:10)where T = E=N is the e�etive temperature. Substituting these results intothe integral for the mean value of e ln e yieldse ln e = 1N Z 10 x ln(x=N) exp(�x) dx (D:11)Multiplying (D.11) by N and subsituting in (D.1) gives an expression forthe asymptoti value of neffneff (1) = 1N exp[�N e ln e℄ = 0:6552 (D:12)whih does not depend on N . This limit is rather lose to numerial value0.61 but slightly exeeds it. The relative di�erene of the order of 0.08annot be explained by the fat that only the quadrati part of potentialenergy is taken into aount. If E = 50; N = 128 then the relative value ofthe quarti term with respet to the total energy of the mode is � E=(4N) '0:01 whih is too small to explain the di�erene observed.In the ase of osillators the anonial distribution has a more om-pliated form beause the energy of eah osillator i depends formally onfour variables pi; qi�1; qi; qi+1 (see, Eq.(D.4)). Correspondingly, the parti-tion funtion and all mean values are de�ned by mulidimensional integrals.Sine the potential energy is a funtion of di�erenes qi+1 � qi; qi � qi�1,92



the number of independent variables for integration is redued to 3: x =qi+1 � qi; y = qi � qi�1 and p = pi. Correspondingly, expressions for Z, themean values of Ei, and e ln e take the form
Z = Z 1�1 Z 1�1 Z 1�1 exp f�Ei(p; x; y)T g dp dx dy (D:13)

Ei = 1Z Z 1�1 Z 1�1 Z 1�1Ei(p; x; y) exp f�Ei(p; x; y)T g dp dx dy (D:14)e ln e = 1Z Z 1�1 Z 1�1 Z 1�1  Ei(p; x; y)E ! ln Ei(p; x; y)E ! exp f�Ei(p; x; y)T gdp dx dy(D:15)whereEi(p; x; y) = 12pi2 + 14(x2 + y2) + �8 (x4 + y4) (D:16)The equations are integrated numerially. Given an e�etive temperature T ,the number of osillators N and total energy E, the mean value of energyper osillator Ei is found from (D.14). Equating Ei to its equipartitionvalue, E=N , yields an appropriate e�etive temperature whih is then usedto alulate e ln e. This leads to the asymptoti value of nos(1) = 0:74that slightly exeeds the result of numerial alulations.
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